• Title/Summary/Keyword: JAR cell

Search Result 113, Processing Time 0.024 seconds

Cellular Lipid Formation by Petroleum Hydrocarbon Fermentation (石油炭化水素 醱酵에 의한 脂質의 生成)

  • Park Tai Won;Suh Hyung Joon
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.449-452
    • /
    • 1977
  • The effect of carbon number of hydrocarbon used as a carbon source in the production of cellular lipid of Rhodotorula sp. and its fatty acid composition were investigated. Using Rhodotorula sp. on n-tetradecane and n-hexadecane whose carbon numbers are even, fermentation was carried out in a jar fermentor of 2 liter-capacity at $28^{\circ}C$, with pH range of 4.0∼4.6 and at oxygen flowing rate of 0. 4 vvm and agitation velocity of 1000 rpm. Drying the produced cell after completion of fermentation, cellular lipid was extracted from the cell using soxhlet extractor and examined its fatty acid composition by gas-liquid chromatography. Cellular lipid content in the cell produced on n-tetradecane and n-hexadecane were 12.0 % and 25,8 % on the basis of dry cell weight, respectively and their fatty acids were mostly even numbered in carbon number.

  • PDF

Optimum culture conditions of cell growth and polysaccharide production by Paecilomyces japonicain batch culture

  • Park, Seok-Jae;Byeon, Hak-Gyu;Han, Dae-Seok;Hong, Eok-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.287-290
    • /
    • 2000
  • To examine effects of agitation and aeration as well as adding of glucose and yeast extract on cell growth and polysaccharide production by Paecilomyces japonica, batch culture was carried out at 5L jar fermenter at $27^{\circ}C$ with the initial pH 7 for 7 days cultivation(innoculum size 2%, working volume 3L). Media compositions(g/L) were 30 glucose, 20 yeast extract, 0.5 $KH_2PO_4$, $0.1\;CuCl_2\;{\cdot}\;2H_2O$. Optimum culture conditions of agitation and aeration in batch culture were 400 rpm and 1.0 vvm, resulting in 23.1 g/L biomass and 2.5 g/L polysaccharide. Additional feeding of glucose and yeast extract with a pulse mode conferred an advantage on cell growth and polysaccharide production with showing the results of 29.2 g/L and 3.3 g/L, respectively.

  • PDF

Starter culture production of Rhodospirillum rubrum P17 for use in treatment of organic waste water (유기폐수처리를 위한 Rhodospirillum rubrum P17의 종균생산)

  • Cho, Kyung-Dug;Kang, Seong-Og;Lim, Wang-Jin;Cho, Hong-Yon;Yang, Han-Chul
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.488-494
    • /
    • 1993
  • A photosynthetic bacterium strain P17 having high growth rate and assimilating ability of organic acids was isolated from several soil samples, which was identified as Rhodospirillum rubrum. Cultural conditions of the strain P17 were examined for the production of starter culture used in the treatment of organic waste water. The addition of organic acids mixture as carbon source containing 0.2% Na-acetate, 0.1% Na-propionate and 0.2% Na-lactate and 0.1% of yeast extract as growth factor stimulated the cell growth. The maximal cell production was obtained at $30^{\circ}C$, pH 7.0, 2,500 lux of illumination and $50{\sim}100\;rpm$ of agitation. Under the optimal conditions of batch and fed-batch culture systems in a Jar fermentor, 5.17 g/l and 7.93 g/l of cells were obtained after S days of cultivation, respectively. In continuous culture system, the cell productivity was 0.206 g/l/h at a dilution rate of 0.21 $h^{-1}$. When R. rubrum P17 was cultivated in a soybean curd waste water, initial COD level(3,240 mg/l) of the waste water was reduced to 250 mg/l after 4 days of cultivation.

  • PDF

Application of Thermotolerant Yeast at High Temperature in Jar-fermentor Scale.

  • Sohn, Ho-Yong;Kim, Young-Ho;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.316-321
    • /
    • 1994
  • We investigated the possibility of industrial application and economit process of high temperature fermentation by thermotolerant alcohol producing yeasts as previously reported. From the 20% glucose media, the RA-74-2 produced 11.8% (v/v) ethanol at $32^{\circ}C$ (0.5% inoculum) and 10.6% (v/v) ethanol at $40^{\circ}C$ (3% inoculum), respectively. Also, 11.3% (v/v) ethanol was produced for 96 hours in the temperature-gradient fermentation. These results suggest that the RA-74-2 could isuccessfully be applied to save the cooling water and energy in industrial scale without re-investment or modification of established fermentation systems. When potato starch was used as the substrate for the RA-74-2, high temperature fermentation above $40^{\circ}C$ was more appropriate for industrial utilization because organic nitrogen was not necessary to economical fermentation. As the naked barley media just prior to industrial inoculation, taken from the Poongkuk alcohol industry Co., were used, 9.6% (v/v) ethanol was produced at $40^{\circ}C$ for 48 hours in jar-fermentor scale (actually, 9.5-9.8% (v/v) ethanol was produced at 30~$32^{\circ}C$ for 100 hours in industrial scale). The ethanol productivity was increased by the high glucoamylase activity as well as the high metabolic ratio at $40^{\circ}C$ Therefore, if the thermotolerant yeast RA-74-2 would be used in industrial scale, we could obtain a high productivity and saving of the cooling water and energy. Meanwhile, the RA-912 produced 6%(v/v) ethanol in 10% glucose media at $45^{\circ}C$ and showed the less ethanol-tolerance compared with industrial strains. As the produced alcohol was recovered by the vacuum evaporator at $45^{\circ}C$ in 15% glucose media, the final fermentation ratio was enhanced (76% of theoretical yields). This suggest that a hyperproductive process could be achieved by a continuous input of the substrate and continuous recovery of the product under vacuum in high cell-density culture.

  • PDF

Large-Scale Production of Cronobacter sakazakii Bacteriophage Φ CS01 in Bioreactors via a Two-Stage Self-Cycling Process

  • Lee, Jin-Sun;Kim, Gyeong-Hwuii;Kim, Jaegon;Lim, Tae-Hyun;Yoon, Yong Won;Yoon, Sung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1430-1437
    • /
    • 2021
  • Cronobacter sakazakii is an opportunistic pathogenic bacterium found in powdered infant formula and is fatal to neonates. Antibiotic resistance has emerged owing to overuse of antibiotics. Therefore, demand for high-yield bacteriophages as an alternative to antibiotics has increased. Accordingly, we developed a modified mass-production method for bacteriophages by introducing a two-stage self-cycling (TSSC) process, which yielded high-concentration bacteriophage solutions by replenishing the nutritional medium at the beginning of each process, without additional challenge. pH of the culture medium was monitored in real-time during C. sakazakii growth and bacteriophage CS01 propagation, and the changes in various parameters were assessed. The pH of the culture medium dropped to 5.8 when the host bacteria reached the early log phase (OD540 = 0.3). After challenge, it decreased to 4.65 and then recovered to 4.94; therefore, we set the optimum pH to challenge the phage at 5.8 and that to harvest the phage at 4.94. We then compared phage production during the TSSC process in jar-type bioreactors and the batch culture process in shaker flasks. In the same volume of LB medium, the concentration of the phage titer solution obtained with the TSSC process was 24 times higher than that obtained with the batch culture process. Moreover, we stably obtained high concentrations of bacteriophage solutions for three cycles with the TSSC process. Overall, this modified TSSC process could simplify large-scale production of bacteriophage CS01 and reduce the unit cost of phage titer solution. These results could contribute to curing infants infected with antibiotic-resistant C. sakazakii.

Effect of Levulinic Acid on the Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Ralstonia eutropha KHB-8862

  • Chung, Sun-Ho;Park, Gang-Guk;Kim, Hyung-Woo;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.79-82
    • /
    • 2001
  • The influence of levulinic acid (LA) on the production of copolyester consisting of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) by Ralstonia eutropha was investigated. Addition of LA into the culture medium greatly increased the molar fraction of 3HV in the copolyester, indicating that LA can be utilized as a precursor of 3HV. In shake flask culture, the 3HV content in the copolyester increased from 7 to 75 mol% by adding 0.5 to 4.0 g/L LA to the medium containing fructose syrup as a main carbon source. A maximal copolyester concentration of 3.6 g/L (69% of dry cell weight) was achieved with a 3HV content of 40 mo1% in a jar fermentor culture containing 4.0 g/L of LA. When LA (total concentration, 4 g/L) was added repeatedly into a fermentor culture to maintain its concentration at a low level, the copolyester content and the 3HV yield from LA reached up to 85% of dry cell weight and 5.0 g/g, respectively, which were significantly higher than those when the same concentration of the LA was supplied al1 at once. The present results indicated that LA is more effective than propionate or valerate as a cosubstrate fur the production of copolyesters with varying molar fractions of 3HV by R. eutropha.

  • PDF

Optmization of Culture Conditions and Nitrogen Sources for Production of Erythritol by Candida magnoliae. (Candida magnoliae에 의한 에리스리톨 생산을 위한 최적 배양환경과 질소원 선별)

  • 고은성;문관훈;한기철;유연우;서진호
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.6
    • /
    • pp.349-354
    • /
    • 2000
  • Culture conditions and nitrogen sources were optimized for production of erythritol, a natural sweetener, by Candida magnoliae M26. The optimal culture conditions were found to be culture temperature of $28^{\circ}C$, initial pH of 7, aeration of 1 vvm and agitation speed of 500 rpm in a 2.5 1 jar-fermentor. Glucose was chosen as the best carbon cource bsed on cell growth and erythritol productivity. Kight steep water(LSW) and corn steep liquor (CSL) which are by-products in starch processing from corn were tested as a nitrogen source substitute for yeast extract. The use of either LSW or CSL did not change the fermentation performance. The experimental results using LSW and CSL showed 1.5 times higher in cell growth and almost the same value in erythritol productivity com-pared with the control fermentation using yeast extract as a nitrogen source. These results suggested that either LSW of CSL could be used as a nitrogen source in a large-scale fermentation for erythritol production.

  • PDF

Optimization of Culture Conditions for D-Ribose Production by Transketolase-Deficient Bacillus subtilis JY1

  • Park, Yong-Cheol;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.665-672
    • /
    • 2004
  • D-Ribose is a five-carbon sugar used for the commercial synthesis of riboflavin, antiviral agents, and flavor enhancers. Batch fermentations with transketolase-deficient B. subtilis JY1 were carried out to optimize the production of D-ribose from xylose. The best results for the fermentation were obtained with a temperature of $37^{\circ}C$ and an initial pH of 7.0. Among various sugars and sugar alcohols tested, glucose and sucrose were found to be the most effective for both cell growth and D-ribose production. The addition of 15 g/l xylose and 15 g/l glucose improved the fermentation performance, presumably due to the adequate supply of ATP in the xylose metabolism from D-xylulose to D-xylulose-5-phosphate. A batch culture in a 3.7-1 jar fermentor with 14.9 g/l xylose and 13.1 g/l glucose resulted in 10.1 g/l D-ribose concentration with a yield of 0.62 g D-ribose/g sugar consumed, and 0.25 g/l-h of productivity. Furthermore, the sugar utilization profile, indicating the simultaneous consumption of xylose and glucose, and respiratory parameters for the glucose and sucrose media suggested that the transketolase-deficient B. subtilis JY1 lost the glucose-specific enzyme II of the phosphoenolpyruvate transferase system.

An Analysis Using Numerical Model of Composite Multi-Layer Insulation for SOFC (SOFC용 고온 적층 단열재의 해석적 고찰)

  • CHOI, CHONGGUN;HWANG, SEUNG-SIK;CHOI, GYU-HONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.540-548
    • /
    • 2019
  • This study was conducted to develop insulation for solid oxide fuel cell (SOFC). The developed insulation is based on the lamination technology and the radiation shielding technology of the satellite insulation. The insulation material is consisting of insulation material for conduction resistance, spacer, and radiation shielding material. The experimental apparatus consisting vacuum bell jar, pump, heater and temperature recording device has developed to verify the performance of the insulation. The experimental values were used as reference data for the modeling development. In this paper, heat transfer is assumed to be one- dimensional phenomena for the prediction of insulation performance and internal temperature distribution in high temperature region of SOFC. The developed model was used to compare the performance difference of insulation types according to composition materials. The analysis result shows that the insulation including spacer and radiation shielding has better heat insulation performance than other cases. In this study, the thickness reduction effect of about 20% was shown compared to the insulation including only conductive material. It is noted that the radiant shielding material should be carefully selected for durability, because SOFC insulation should be used for a long time at high temperature.

Effects of Fermentation Conditions on the Production of the Useful Polysaccharides from Marine Bacterium Zoogloea sp. (해양세균 Zoogloea sp.로부터 유용 다당류의 생산에 미치는 발효조건의 영향)

  • 장재혁;배승권;김봉조;하순득;공재열
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.303-307
    • /
    • 1998
  • The fermentation conditions for the maximal production of the useful polysaccharides(water soluble polysaccharide and cell bound polysaccharide) from marine bacterium Zoogloea sp.(KCCM 10036) were investigated with a 5 L jar fermentor. The maximal production of these polysaccharides was obtained under the conditions of initial pH 7.8, 30$^{\circ}C$, 400 rpm of agitation speed, 2 Wm of aeration rate, 10%(w/v) of inoculum size and 2.5%(w/v) of glucose substrate and 10.38 g/L of total polysaccharide was produced. Apparent viscosity of the culture broth was increased with the production of these polysaccharides and the maximum value was reached to 22,500 cp.

  • PDF