• 제목/요약/키워드: JAK3

검색결과 122건 처리시간 0.019초

Calcium/Calmodulin-Dependent Protein Kinase is Involved in the Release of High Mobility Group Box 1 Via the Interferon-${\beta}$ Signaling Pathway

  • Ma, Lijuan;Kim, Seon-Ju;Oh, Kwon-Ik
    • IMMUNE NETWORK
    • /
    • 제12권4호
    • /
    • pp.148-154
    • /
    • 2012
  • Previously, we have reported that high mobility group box 1 (HMGB1), a proinflammatory mediator in sepsis, is released via the IFN-${\beta}$-mediated JAK/STAT pathway. However, detailed mechanisms are still unclear. In this study, we dissected upstream signaling pathways of HMGB1 release using various molecular biology methods. Here, we found that calcium/calmodulin-dependent protein kinase (CaM kinase, CaMK) is involved in HMGB1 release by regulating IFN-${\beta}$ production. CaMK inhibitor, STO609, treatment inhibits LPS-induced IFN-${\beta}$ production, which is correlated with the phosphorylation of interferon regulatory factor 3 (IRF3). Additionally, we show that CaMK-I plays a major role in IFN-${\beta}$ production although other CaMK members also seem to contribute to this event. Furthermore, the CaMK inhibitor treatment reduced IFN-${\beta}$ production in a murine endotoxemia. Our results suggest CaMKs contribute to HMGB1 release by enhancing IFN-${\beta}$ production in sepsis.

CP-690550 Treatment Ameliorates Established Disease and Provides Long-Term Therapeutic Effects in an SKG Arthritis Model

  • Oh, Keunhee;Seo, Myung Won;Kim, In Gyu;Hwang, Young-Il;Lee, Hee-Yoon;Lee, Dong-Sup
    • IMMUNE NETWORK
    • /
    • 제13권6호
    • /
    • pp.257-263
    • /
    • 2013
  • Although pathogenesis of human rheumatoid arthritis (RA) remains unclear, arthritogenic T cells and downstream signaling mediators have been shown to play critical roles. An increasing numbers of therapeutic options have been added for the effective control of RA. Nevertheless, there is still a category of patients that fails treatment and suffers from progressive disease. The recently developed immunosuppressant CP-690550, a small molecule JAK kinase inhibitor, has been implicated as an important candidate treatment modality for autoimmune arthritis. In this study, we evaluated the therapeutic effect of CP-690550 on established arthritis using an SKG arthritis model, a pathophysiologically relevant animal model for human RA. CP-690550 treatment revealed remarkable long-term suppressive effects on SKG arthritis when administered to the well-advanced disease (clinical score 3.5~4.0). The treatment effect lasted at least 3 more weeks after cessation of drug infusion, and suppression of disease was correlated with the reduced pro-inflammatory cytokines, including IL-17, IFN-${\gamma}$, and IL-6 and increased level of immunoregulatory IL-10.

두경부암의 최신 표적치료 (What's New in Molecular Targeted Therapies for Head and Neck Cancer?)

  • 이서영;김혜련
    • 대한두경부종양학회지
    • /
    • 제37권2호
    • /
    • pp.11-17
    • /
    • 2021
  • Head and neck cancer is the 6th most frequently diagnosed solid tumor in the world. Alcohol consumption, smoking, and HPV infection are associated with the incidence of head and neck squamous cell carcinoma (HNSCC). Although a multidisciplinary approach is a key strategy for the treatment of locally advanced HNSCC, systemic therapy is the mainstream of recurrent or metastatic HNSCC treatment. Stage IV HNSCC has a relatively poor prognosis with median overall survival of around one year. There have been many clinical trials to investigate the efficacy of target agents in the treatment of HNSCC. In the HPV-negative HNSCC, TP53 and CDKN2A are the most commonly mutated genes. In the HPV-positive HNSCC, the PI3K pathway is frequently altered. EGFR, PI3K, cell cycle pathway, MET, HRAS, and IL6/JAK/STAT pathway are explored targets in HNSCC. In this study, we review the target pathways and agents under research. We also introduce here umbrella trials of recurrent or metastatic HNSCC conducted by the Korea Cancer Study Group. The combination of target agents with immune checkpoint inhibitors or cytotoxic chemotherapies would be a future step in the precision medicine of HNSCC treatment.

Brief low [Mg2+]o-induced Ca2+ spikes inhibit subsequent prolonged exposure-induced excitotoxicity in cultured rat hippocampal neurons

  • Kim, Hee Jung;Yang, Ji Seon;Yoon, Shin Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권1호
    • /
    • pp.101-109
    • /
    • 2016
  • Reducing $[Mg^{2+}]_o$ to 0.1 mM can evoke repetitive $[Ca^{2+}]_i$ spikes and seizure activity, which induces neuronal cell death in a process called excitotoxicity. We examined the issue of whether cultured rat hippocampal neurons preconditioned by a brief exposure to 0.1 mM $[Mg^{2+}]_o$ are rendered resistant to excitotoxicity induced by a subsequent prolonged exposure and whether $Ca^{2+}$ spikes are involved in this process. Preconditioning by an exposure to 0.1 mM $[Mg^{2+}]_o$ for 5 min inhibited significantly subsequent 24 h exposure-induced cell death 24 h later (tolerance). Such tolerance was prevented by both the NMDA receptor antagonist D-AP5 and the L-type $Ca^{2+}$ channel antagonist nimodipine, which blocked 0.1 mM $[Mg^{2+}]_o$-induced $[Ca^{2+}]_i$ spikes. The AMPA receptor antagonist NBQX significantly inhibited both the tolerance and the $[Ca^{2+}]_i$ spikes. The intracellular $Ca^{2+}$ chelator BAPTA-AM significantly prevented the tolerance. The nonspecific PKC inhibitor staurosporin inhibited the tolerance without affecting the $[Ca^{2+}]_i$ spikes. While $G{\ddot{o}}6976$, a specific inhibitor of $PKC{\alpha}$ had no effect on the tolerance, both the $PKC{\varepsilon}$ translocation inhibitor and the $PKC{\zeta}$ pseudosubstrate inhibitor significantly inhibited the tolerance without affecting the $[Ca^{2+}]_i$ spikes. Furthermore, JAK-2 inhibitor AG490, MAPK kinase inhibitor PD98059, and CaMKII inhibitor KN-62 inhibited the tolerance, but PI-3 kinase inhibitor LY294,002 did not. The protein synthesis inhibitor cycloheximide significantly inhibited the tolerance. Collectively, these results suggest that low $[Mg^{2+}]_o$ preconditioning induced excitotoxic tolerance was directly or indirectly mediated through the $[Ca^{2+}]_i$ spike-induced activation of $PKC{\varepsilon}$ and $PKC{\xi}$, JAK-2, MAPK kinase, CaMKII and the de novo synthesis of proteins.

Genome-wide Survey of Copy Number Variants Associated with Blood Pressure and Body Mass Index in a Korean Population

  • Moon, Sang-Hoon;Kim, Young-Jin;Kim, Yun-Kyoung;Kim, Dong-Joon;Lee, Ji-Young;Go, Min-Jin;Shin, Young-Ah;Hong, Chang-Bum;Kim, Bong-Jo
    • Genomics & Informatics
    • /
    • 제9권4호
    • /
    • pp.152-160
    • /
    • 2011
  • Hypertension is the major factor of most death and high blood pressure (BP) can lead to stroke, myocardial infarction and cardiac failure. Moreover, hypertension is strongly correlated with body mass index (BMI). Although the exact causes of hypertension are still unclear, some of genetic loci were discovered from genome-wide association study (GWAS). Therefore, it is essential to study genetic variation for finding more genetic factor affecting hypertension. The purpose of our study is to conduct a CNV association study for hypertension-related traits, BP and BMI, in Korean individuals. We identified 2,206 CNV regions from 3,274 community-based Korean participants using the Affymetrix Genome-Wide Human SNP Array 6.0 platform and performed a logistic regression analysis of CNVs with two hypertension-related traits, BP and BMI. Moreover, the 4,692 participants in an independent cohort were selected for respective replication analyses. GWAS of CNV identified two loci encompassing previously known hypertension-related genes: LPA (lipoprotein) on 6q26, and JAK2 (Janus kinase 2) on 9p24, with suggestive p-values (0.0334 for LPA and 0.0305 for JAK2 ). These two positive findings, however, were not evaluated in the replication stage. Our result confirmed the conclusion of CNV study from the WTCCC suggesting weak association with common diseases. This is the first study of CNV association study with BP and BMI in Korean population and it provides a state of CNV association study with common human diseases using SNP array.

3-Deoxysappanchalcone Promotes Proliferation of Human Hair Follicle Dermal Papilla Cells and Hair Growth in C57BL/6 Mice by Modulating WNT/β-Catenin and STAT Signaling

  • Kim, Young Eun;Choi, Hyung Chul;Lee, In-Chul;Yuk, Dong Yeon;Lee, Hyosung;Choi, Bu Young
    • Biomolecules & Therapeutics
    • /
    • 제24권6호
    • /
    • pp.572-580
    • /
    • 2016
  • 3-Deoxysappanchalcone (3-DSC) has been reported to possess anti-allergic, antiviral, anti-inflammatory and antioxidant activities. In the present study, we investigated the effects of 3-DSC on the proliferation of human hair follicle dermal papilla cells (HDPCs) and mouse hair growth in vivo. A real-time cell analyzer system, luciferase assay, Western blot and real-time polymerase chain reaction (PCR) were employed to measure the biochemical changes occurring in HDPCs in response to 3-DSC treatment. The effect of 3-DSC on hair growth in C57BL/6 mice was also examined. 3-DSC promoted the proliferation of HDPCs, similar to Tofacitinib, an inhibitor of janus-activated kinase (JAK). 3-DSC promoted phosphorylation of ${\beta}$-catenin and transcriptional activation of the T-cell factor. In addition, 3-DSC potentiated interleukin-6 (IL-6)-induced phosphorylation and subsequent transactivation of signal transducer and activator of transcription-3 (STAT3), thereby increasing the expression of cyclin-dependent kinase-4 (Cdk4), fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF). On the contrary, 3-DSC attenuated STAT6 mRNA expression and IL4-induced STAT6 phosphorylation in HDPCs. Finally, we observed that topical application of 3-DSC promoted the anagen phase of hair growth in C57BL/6 mice. 3-DSC stimulates hair growth possibly by inducing proliferation of follicular dermal papilla cells via modulation of $WNT/{\beta}$-catenin and STAT signaling.

Extracellular Signal-regulated Kinase Activation Is Required for Serine 727 Phosphorylation of STAT3 in Schwann Cells in vitro and in vivo

  • Lee, Hyun-Kyoung;Jung, Jun-Yang;Lee, Sang-Hwa;Seo, Su-Yeong;Suh, Duk-Joon;Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권3호
    • /
    • pp.161-168
    • /
    • 2009
  • In the peripheral nerves, injury-induced cytokines and growth factors perform critical functions in the activation of both the MEK/ERK and JAK/STAT3 pathways. In this study, we determined that nerve injury-induced ERK activation was temporally correlated with STAT3 phosphorylation at the serine 727 residue. In cultured Schwann cells, we noted that ERK activation is required for the serine phosphorylation of STAT3 by neuropoietic cytokine interleukin-6 (IL-6). Serine phosphorylated STAT3 by IL-6 was transported into Schwann cell nuclei, thereby indicating that ERK may regulate the transcriptional activity of STAT3 via the induction of serine phosphorylation of STAT3. Neuregulin-1 (NRG) also induced the serine phosphorylation of STAT3 in an ERK-dependent fashion. In contrast with the IL-6 response, serine phosphorylated STAT3 induced by NRG was not detected in the nucleus, thus indicating the non-nuclear function of serine phosphorylated STAT3 in response to NRG. Finally, we determined that the inhibition of ERK prevented injury-induced serine phosphorylation of STAT3 in an ex-vivo explants culture of the sciatic nerves. Collectively, the results of this study show that ERK may be an upstream kinase for the serine phosphorylation of STAT3 induced by multiple stimuli in Schwann cells after peripheral nerve injury.

Tumour-Derived Reg3A Educates Dendritic Cells to Promote Pancreatic Cancer Progression

  • Guo, Jie;Liao, Mengfan;Hu, Xianmin;Wang, Jun
    • Molecules and Cells
    • /
    • 제44권9호
    • /
    • pp.647-657
    • /
    • 2021
  • As a pancreatic inflammatory marker, regenerating islet-derived protein 3A (Reg3A) plays a key role in inflammation-associated pancreatic carcinogenesis by promoting cell proliferation, inhibiting apoptosis, and regulating cancer cell migration and invasion. This study aimed to reveal a novel immuno-regulatory mechanism by which Reg3A modulates tumour-promoting responses during pancreatic cancer (PC) progression. In an in vitro Transwell system that allowed the direct co-culture of human peripheral blood-derived dendritic cells (DCs) and Reg3A-overexpressing/ silenced human PC cells, PC cell-derived Reg3A was found to downregulate CD80, CD83 and CD86 expression on educated DCs, increase DC endocytic function, inhibit DC-induced T lymphocyte proliferation, reduce IL-12p70 production, and enhance IL-23 production by DCs. The positive effect of tumour-derived Reg3A-educated human DCs on PC progression was demonstrated in vivo by intraperitoneally transferring them into PC-implanted severe combined immunodeficiency (SCID) mice reconstituted with human T cells. A Reg3A-JAK2/STAT3 positive feedback loop was identified in DCs educated with Reg3A. In conclusion, as a tumour-derived factor, Reg3A acted to block the differentiation and maturation of the most important antigen-presenting cells, DCs, causing them to limit their potential anti-tumour responses, thus facilitating PC escape and progression.

단삼이 수지상 세포의 유전자 발현에 미치는 영향 (Effects of Salviae miltiorrhizae Radix Extract on Gene Expression of Dendritic cells.)

  • 강문여;김종한;최정화;박수연
    • 한방안이비인후피부과학회지
    • /
    • 제21권3호
    • /
    • pp.52-68
    • /
    • 2008
  • Objectives and Methods : Salviae miltiorrhizae Radix (SMR) promotes blood circulation to remove blood stasis, cools the blood to relieve carbuncle, clears away heat from the heart and tranquilizes the mind. This study was designed to investigate the effects of SMR on immuno-potentiative action in terms of changes in the genetic profile of dendritic cells (DC) using by microarray analysis. Results and Conclusion: In this experiment, treatments with more than 250 ${\mu}g/ml$ upto 1000 ${\mu}g/ml$ of SMR elevated the proliferation rates of DC. Microscopic observations confirmed the tendency on proliferation rates. Expression levels of genes related with cellular methabolic process, cell communication, and macromolecule metabolic process were elevated by treatment with SMR in comparison of functional distribution in a Biological Process. In molecular functions, expression levels of genes related with receptor activation, nucleotide binding and nucleic acid binding were elevated. In cellular components, expression levels of genes related to cellular membrane-bound organelles were elevated. In addition, expression levels of genes related to Wnt signalling pathways and the glycerophospholipid metabolism were elevated through analysis using pathway analysis between up-and down-regulated genes in cells treated with SMR. Finally, genes related to JAK2, GRB2, CDC42, SMAD4, B2M, FOS and ESRI located the center of Protein interaction network of genes through treatment with SMR.

  • PDF

반하가 천식이 유발된 생쥐 폐조직의 유전자 발현에 미치는 영향 (Effects of Pinelliae Rhizoma on Gene Expression of Lung Tissue from Asthma induced Mice)

  • 이명진;김종한;최정화;박수연
    • 한방안이비인후피부과학회지
    • /
    • 제21권3호
    • /
    • pp.36-51
    • /
    • 2008
  • Objective : This study investigated the effects of PR(Pinelliae Rhizoma) on gene expression of lung tissue resected from asthma induced mice using intra-nasal instillation. Methods : Gene expression levels were measured using a microarray technique, and a functional analysis on these genes was conducted. Results : A total of 3270 genes were up-regulated or down-regulated, 860 genes which were lowered by induction of asthma were restored to those of naive animals, Furthermore hand, 1235 genes were lowered to normal levels, which were elevated by induction of asthma. Most of changed genes were involved in signalling pathways. Genes in which expression levels were restored by oral administration of PR were involved in MAPK pathway, focal adhesion, and regulation of actin cytoskeleton etc. Genes of which expression levels were lowered by oral administration of PR were involved in rhodopsin-like receptor activity, zinc ion binding and ATP binding. These genes were also involved in neuroactive ligand receptor interaction, the JAK-STAT signaling pathway and also the T-cell receptor signaling pathway. Conclusion : These results demonstrate the strong possibility that the mechanisms of PR on asthma are involved in neuroactive ligand receptor interaction pathway or related molecules.

  • PDF