• 제목/요약/키워드: J-lattice

Search Result 274, Processing Time 0.022 seconds

Physics Study of Canada Deuterium Uranium Lattice with Coolant Void Reactivity Analysis

  • Park, Jinsu;Lee, Hyunsuk;Tak, Taewoo;Shin, Ho Cheol;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.6-16
    • /
    • 2017
  • This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the $2{\times}2$ checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case.

Energy absorption optimization on a sandwich panel with lattice core under the low-velocity impact

  • Keramat Malekzadeh Fard;Meysam Mahmoudi
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.525-538
    • /
    • 2023
  • This paper focuses on the energy absorption of lattice core sandwich structures of different configurations. The diamond lattice unit cell, which has been extensively investigated for energy absorption applications, is the starting point for this research. The energy absorption behaviour of sandwich structures with an expanded metal sheet as the core is investigated at low-velocity impact loading. Numerical simulations were carried out using ABAQUS/EXPLICIT and the results were thoroughly compared with the experimental results, which indicated desirable accuracy. A parametric analysis, using a Box-Behnken design (BBD), as a method for the design of experiments (DOE), was performed. The samples fabricated in three levels of parameters include 0.081, 0.145, and 0.562 mm2 Cell sizes, and 0, 45, and 90-degree cell orientation, which were investigated. It was observed from experimental data that the angle of cells orientation had the highest degree of influence on the specific energy absorption. The results showed that the angle of cells orientation has been the most influential parameter to increase the peak forces. The results from using the design expert software showed the optimal specific energy absorption and peak force to be 1786 J/kg and 26314.4 N, respectively. The obtained R2 values and normal probability plots indicated a good agreement between the experimental results and those predicted by the model.

Possible power increase in a natural circulation Soluble-Boron-Free Small Modular Reactor using the Truly Optimized PWR lattice

  • Steven Wijaya;Xuan Ha Nguyen;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.330-338
    • /
    • 2023
  • In this study, impacts of an enhanced-moderation Fuel Assembly (FA) named Truly Optimized PWR (TOP) lattice, which is modified based on the standard 17 × 17 PWR FA, are investigated in a natural circulation Soluble-Boron-Free (SBF) Small Modular Reactor (SMR). Two different TOP lattice designs are considered for the analysis; one is with 1.26 cm pin pitch and 0.38 cm fuel pellet radius, and the other is with 1.40 cm pin pitch and 0.41 cm fuel pellet radius. The NuScale core design is utilized as the base model and assumed to be successfully converted to an SBF core. The analysis is performed following the primary coolant circulation loop, and the reactor is modelled as a single channel for thermal-hydraulic analyses. It is assumed that the ratio of the core pressure drop to the total system pressure drop is around 0.3. The results showed that the reactor power could be increased by 2.5% and 9.8% utilizing 1.26/0.38 cm and 1.40/0.41 cm TOP designs, respectively, under the identical coolant inlet and outlet temperatures as the constraints.

DESIGN FOR AERODYNAMIC NOISE REDUCTION OF RAILWAY TRACTION MOTOR USING LBM (격자볼츠만기법을 이용한 전동차용 견인전동기 공력소음 저감 설계)

  • Kim, J.H.;Ki, H.C.;Byun, S.J.;Rho, J.H.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.103-109
    • /
    • 2017
  • The aerodynamic noise reduction of railway traction motor is required to satisfy new enhanced Korean noise regulations for a train. This paper is the study result on a noise reduction of a railway traction motor using Lattice Boltzmann Method(LBM). To verify the reliability of numerical analysis, the noise performance of the base model evaluated using LBM, and calculated result was compared with the experimental data. In addition, main noise sources were selected to design parameters through analyzing the flow field of the base model. Based on the noise sources analysis result, a design improvement model of traction motor for this study was derived to reduce the noise. The performance of a design improvement model was evaluated by applying a validated numerical scheme. As a result, it was confirmed that the noise was reduced due to the suppression of the internal turbulent flow components.

COMPACT INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALGL

  • Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.447-452
    • /
    • 2005
  • Given operators X and Y on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate compact interpolation problems for vectors in a tridiagonal algebra. Let L be a subspace lattice acting on a separable complex Hilbert space H and Alg L be a tridiagonal algebra. Let X = $(x_{ij})\;and\;Y\;=\;(y_{ij})$ be operators acting on H. Then the following are equivalent: (1) There exists a compact operator A = $(x_{ij})$ in AlgL such that AX = Y. (2) There is a sequence {$\alpha_n$} in $\mathbb{C}$ such that {$\alpha_n$} converges to zero and $$y_1\;_j=\alpha_1x_1\;_j+\alpha_2x_2\;_j\;y_{2k}\;_j=\alpha_{4k-1}x_{2k\;j}\;y_{2k+1\;j}=\alpha_{4k}x_{2k\;j}+\alpha_{4k+1}x_{2k+1\;j}+\alpha_{4k+2}x_{2k+2\;j\;for\;all\;k\;\epsilon\;\mathbb{N}$$.

Effects of Polyacrylic Acid Doping on Microstructure and Critical Current Density of $MgB_2$ Bulk ($MgB_2$ bulk의 미세구조와 임계전류밀도에 미치는 polyacrylic acid doping 효과)

  • Lee, S.M.;Hwang, S.M.;Lee, C.M.;Joo, J.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.11 no.2
    • /
    • pp.87-91
    • /
    • 2010
  • We fabricated the polyacrylic acid (PAA)-doped $MgB_2$ bulks and characterized their lattice parameters, actual C substitutions, microstructures, and critical properties. The boron (B) powder was mixed with PAA using N,N-dimethylformamide as solvent and then the solution was dried out at $200^{\circ}C$ and crushed. The C treated B powder and magnesium powder were mixed and compacted by uniaxial pressing at 500 MPa, followed by sintering at $900^{\circ}C$ for 1 h in high purity Ar atmosphere. We observed that the PAA doping increased the MgO amount but decreased the grain size, a-axis lattice constant, and critical temperature ($T_c$), which is indicative of the C substitution for B sites in $MgB_2$. In addition, the critical current density ($J_c$) at high magnetic field was significantly improved with increasing PAA addition: at 5 K and 6.6 T, the $J_c$ of 7 wt% PAA-doped sample was $6.39\;{\times}\;10^3\;A/cm^2$ which was approximately 6-fold higher than that of the pure sample ($1.04\;{\times}\;10^3\;A/cm^2$). This improvement was probably due to the C substitution and the refinement of grain size by PAA doping, suggesting that PAA is an effective dopant in improving $J_c$(B) performance of $MgB_2$.

컴퓨터 보안모델의 분석 및 비교에 관한 연구

  • Hong, Gi-Yung;Lee, Chul-Won
    • Electronics and Telecommunications Trends
    • /
    • v.5 no.3
    • /
    • pp.71-89
    • /
    • 1990
  • Secure/Trusted 컴퓨터시스템을 설계 및 개발하기 위하여 필요한 보안정책과 이를 실현하기 위한 보안모델을 분석하였다. 보안정책으로는 TCSEC을 근간으로 하여 전통적인 MAC정책과 DAC 정책을 상호 비교분석하였으며, 보안 모델로는 미국방성 산하의 NCSC의 Multilevel Security를 만족하는 BLP 모델을 비롯하여 Biba모델, HRU모델, SRI모델, Lattice모델들의 비교분석을 제시하였다.

ISOMORPHISMS OF $B{(n)}_{2n}$

  • Kang, J.H;Jo, Y.S;Park, K.S
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.7-20
    • /
    • 1998
  • In this paper, we will investigated certain two types of isomorphisms of $B^{(n)}_{2n}$ which are closely related.

  • PDF

GENERALIZED ALTERNATING SIGN MATRICES AND SIGNED PERMUTATION MATRICES

  • Brualdi, Richard A.;Kim, Hwa Kyung
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.921-948
    • /
    • 2021
  • We continue the investigations in [6] extending the Bruhat order on n × n alternating sign matrices to our more general setting. We show that the resulting partially ordered set is a graded lattice with a well-define rank function. Many illustrative examples are given.