• Title/Summary/Keyword: J-groove Weld

Search Result 29, Processing Time 0.018 seconds

Effect of Ni and Mo on Mechanical Properties of Submerged Arc Welds with Flexible Glasswool Backing (FGB SAW 용접부 물성에 미치는 Ni과 Mo의 영향에 관한 연구)

  • Jee, C.H.;Choi, J.T.;Kim, D.J.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.55-55
    • /
    • 2009
  • FGB(Flexible Glasswool Backing) Submerged Arc Welding has been one of the main welding processes for one side butt welding in shipbuilding industries, which can efficiently improve the welding productivity by the addition of a supplementary filler metal into the molten weld pool. As recent ships have become larger in size, the application of high tensile and higher grade of steels has been continuously increased. Single pass FGB SA welding process accompanies such a high heat input when welding thick plates that the mechanical properties of weld metal can be dramatically degraded. This study has been performed in order to obtain high toughness and tensile properties of high heat input FGB SA welds, and to evaluate the effect of alloy elements on their mechanical properties. To complete welding 25mm-thick EH36 grade steel plate by single pass, 1.2mm diameter and 1.0mm long cut wires has been distributed in the groove before welding, and three different test coupons have been made using C-1.5%Mn, C-1.8%Mn-0.5%Mo, and C-1.4%Mn-1.7%Ni cut wires to investigate the influence of nickel(Ni) and molybdenum(Mo) on the mechanical properties of welds. Test results showed that the addition of Ni and Mo effectively promotes the formation of Acicular Ferrite(AF), while significantly reducing the amount of Grain Boundary Ferrite(GBF) in weld metal microstructures, which resulted in a beneficial effect on low temperature impact toughness and strength.

  • PDF

The Effect of Heat Input on Grooving Corrosion Behavior in the Welds of Electric Resistance Welding Steel Pipe (ERW 강관 용접부의 홈부식거동에 미치는 입열량의 영향)

  • Lee, B.W.;Lee, J.S.;Park, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • The microstructure and electrochemical analysis of welds of electric resistance welding(ERW) pipe were investigated. The direction of metal flow line in HAZ of ERW pipe shifted to the inner(or outer) surface of pipe by plastic deformation during welding. The lowest heat input welds of ERW pipe was showed crack by liquid penetrant testing. Accelerated corrosion test by constant current density of 20mA/$cm^{2}$ developed groove at the welds of ERW pipe and the measured grooving factors were about $1.2{\sim}1.5$. Corrosion potential of base metal obtained by cyclic polarization in artificial sea water(3.5wt.% NaCl solution) was 100mV higher than that of weld metal of ERW pipe.

  • PDF

Microstructural Characteristics of T-bar Welding Zone for Shipbuilding and Offshore Plants (조선해양플랜트용 T-bar 용접부의 미세조직학적 특성에 관한 연구)

  • Hwang, Y.J.;Choi, Y.S.;Jang, J.H.;Lee, S.I.;Gong, K.Y.;Lee, DG.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.296-300
    • /
    • 2018
  • T-type and H-type section steels were generally used in shipbuilding and offshore plants and were produced by welding technology. These section steels were produced by handwork, and the supplying amounts can't satisfy the demand amounts of the fabrication companies. In case of fillet welding, there are some gaps in weld-joint region due to no groove preparation processing and it can occur crack initiation in the welded region. It is important to evaluate the microstructural and mechanical properties of welded zone to solve these problems. To satisfy the demand amounts of T-bar parts, automatic welding technology was introduced and several conditions as a function of welding speeds were carried out to improve the manufacturing speed. Heat-affected zone may be affected by variation of heat input and cooling rate through automatic welding speed and welding speed is necessary to be optimized. In this study, fusion zone and heat-affected zone were investigated by microstructural and mechanical analysis and were evaluated whether the welded parts were sound or not.

Residual Stress and Fracture Analysis of Thick Plate for Partial Penetration Multi-pass Weldment (후판 부분용입 다층용접의 잔류음력 및 파괴 해석)

  • Kim, Seok;Shim, Yong-Lae;Bae, Sung-In;Song, Jung-Il
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.636-642
    • /
    • 2001
  • Partial penetration welding joint defines the groove welds that applies the one side welding which does not use steel backing and both side welding without back gouging, that is, the partial penetration welding joint leaves an unwelded portion at the root of the welding area. In this study, we analyzed the residual stress and fracture on the thick metal plates that introduced the partial penetration welding method. As results of using above mentioned welding method, we could draw a conclusion that longitudinal stress and traverse stress occurred around the welding area was so minimal and did not affect any influence. We also performed the fracture behavior evaluation on the partial penetration multi-pass welding with 25.4mm thick plate by using theJ-integral, which finally led us the conclusion that the partial penetration multi -pass welding method is more applicable and effective in handling the root face with less than 6.35mm.

  • PDF

Effects of Al Contents on Toughness of High Strength GMA Weld Metal (고강도 GMA 용착금속의 충격인성에 미치는 Al의 영향)

  • Park, Hyoung-Keun;Kim, Hee-Jin;Seo, Jun-Seok;Ryoo, Hoi-Soo;Ko, Jin-Hyun
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.30-30
    • /
    • 2010
  • 고강도강의 용접성은 저온균열 저항성으로 대변되는데, TMCP강과 HSLA강 등이 개발되면서 고강도강의 저온균열저항성이 크게 향상되어 무예열 용접성이 확보되었다. 그러나 용접재료 측면에서는 그에 상응하는 재료의 개발이 지연되어 강재 개발로 인한 우수한 성능을 충분히 발휘하지 못하고 있으며 용접부의 건전성 문제가 심각하게 인식되고 있다. 이로 인해 고강도강에 적용시킬 수 있는 무예열 용접재료의 필요성이 대두되어 개발이 진행되고 있으며 상용화를 앞두고 있다. 이러한 용접재료의 개발단계에서 합금설계는 가장 중요한 항목으로 합금 조성에 따라 용착금속의 강도 및 인성에 상당한 변화를 가져오기 때문이다. 합금원소 중 Al은 강재의 탈산을 돕기 때문에 가능한 많은 양의 첨가를 요구하지만 적정량 이상을 초과하게 되면 오히려 용착금속의 저온인성 특성에 부정적인 영향을 미치게 된다. 본 연구에서는 고강도 GMA 용착금속의 Al함량을 단계적으로 변화시켜 용착금속 내 최적의 Al의 함량을 찾고자 하였다. 또한 높은 비용 및 많은 시간을 필요로 하는 와이어로드를 제작하지 않고도 Al함량을 조절 할 수 있는 방법을 고안하고자 하였다. 실험의 모재는 HSLA-100강을 사용하였으며 용접재료는 ER120S-G급의 GMA용접 재료를 사용하였다. 모재 성분과의 희석을 방지하기 위해 V-Groove 가공 후 6패스 Buttering 용접을 실시하였고, 다시 Buttering용접부에 V-Groove 가공을 하여 최종 용접을 실시하였다. 이 때 Al함량을 조절하기 위해 최종 용접 개선부 밑면에 홈을 판 후 Al fiber(직경 0.3mm)를 깔고 용접(입열량 20kJ/cm)하여 Al함유량을 총 3가지(0.003~0.04% Al)로 제어하였다. 용접 후 각각의 시편에 대해 미세조직, 충격시험, O/N분석, 성분분석 등의 시험을 수행하여 저온인성과의 상관관계를 알아보았다.

  • PDF

Effect of Ti Contents on characteristics of 700Mpa Weld Metal (Ti 함량에 따른 700MPa급 용착금속의 특성 변화)

  • Park, H.K.;Kim, H.J.;Seo, J.S.;Ryoo, H.S.;Ko, J.H.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.47-47
    • /
    • 2009
  • 용착금속의 미세조직은 크게 Acicular ferrite(AF), Ferrite with aligned second phase(FS), Primary ferrite(=Grain boundary Ferrite) 등으로 나눌 수 있다. 이 중 침상형 페라이트(AF)는 인성과 강도를 동시에 증가시킬 수 있으므로 이를 다량 확보하는 것이 용접산업의 관건이다. 본 연구에서는 침상형 페라이트 발생에 기여한다고 알려진 Ti 함량을 용착금속에서 단계적으로 조절하여 나타나는 미세조직과 특성변화를 관찰하였다. 모재는 HSB-600을 사용하였으며 용접재료는 ER100S-G급의 Ti가 함유되어 있는 것(A)과 미함유된 것(B)을 사용하였다. 모재 성분의 희석을 방지하기 위해 V-Groove 가공 후 Buttering 용접을 실시하였다. 중앙에 가공된 V-그루브에 이들 재료를 적절히 조합하고 용접(입열량 20kJ/cm)하여 Ti함유량을 총 4가지(0.002~0.025% Ti)로 제어하였다. 용접 후 각각의 시편에 대해 미세조직, 충격시험, O/N분석, 성분분석 등의 시험을 진행하였다. 미세조직 관찰결과 Ti함량이 증가할수록 AF는 증가하고 FS는 감소함을 확인할 수 있었으며 충격시험결과 Ti가 많이 함유된 시편일수록 더 낮은 연성취성 천이온도(DBTT)를 나타내었다. EDS와 SEM으로 관찰한 결과 Ti함량 증가에 따라 비금속개재물의 크기는 작아지고 밀도는 높아지는 것을 확인할 수 있었으며 개재물 내에서의 Ti함량도 더 많아지는 것을 확인 할 수 있었다.

  • PDF

Laser Peening Application for PWR Power Plants (비등수형 원자로 발전소에의 레이저 피닝 적용기술)

  • Kim, Jong-Do;SANO, Yuji
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.13-18
    • /
    • 2016
  • Toshiba has developed a laser peening system for PWRs(pressurized water reactors) as well after the one for BWRs(boiling water reactors), and applied it for BMI(bottom-mounted instrumentation) nozzles, core deluge line nozzles and primary water inlet nozzles of Ikata Unit 1 and 2 of Shikoku Electric Power Company since 2004, which are Japanese operating PWR power plants. Laser pulses were delivered through twin optical fibers and irradiated on two portions in parallel to reduce operation time. For BMI nozzles, we developed a tiny irradiation head for small tubes and we peened the inner surface around J-groove welds after laser ultrasonic testing (LUT) as the remote inspection, and we peened the outer surface and the weld for Ikata Unit 2 supplementary. For core deluge line nozzles and primary water inlet nozzles, we peened the inner surface of the dissimilar metal welding, which is of nickel base alloy, joining a safe end and a low alloy metal nozzle. In this paper, the development and the actual application of the laser peening system for PWR power plants will be described.

Evaluation of Fracture Toughness in Steel Weldment for Inner Wall of LNG Storage Tank (LNG 저장탱크 내조용 강 용접부의 파괴인성 평가)

  • Jang J.-i.;Ju J.-B.;Yang Y.-c.;Kim W.-s.;Hong S. H.;Kwon D.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 1998
  • In this study, for the safety performance of LNG storage tank, the fracture toughness in X-grooved weld HAZ(heat-affected zone) of $9\%$ Ni steel was evaluated qualitatively and quantitatively, and the relation with the change in microstructure was analyzed. The toughness assessment was peformed through the modified CTOD test proposed for thick weldment with X-groove. Additionally, microstructures of HAZ were evaluated by OM, SEM and XRD. From the results, HAZ toughness of SMA(shielded metal arc)-welded $9\%$ Ni steel decreased as the evaluated region approached the fusion line. The decrease in toughness was apparently caused by the increase in the fraction of coarse-grained zone within HAZ. On the other hand, toughness drop with decreasing test temperature in F.L.(fusion line) ${\~}$F.L.+3mm was larger than that in F.L.+5mm${\~}$F.L.+7mm region due to the fact that in the former regions, retained austenite had poor stability.

  • PDF

Sensitivity Analysis of Nozzle Geometry Variables for Estimating Residual Stress in RPV CRDM Penetration Nozzle (원자로 상부헤드 관통노즐의 잔류응력 예측을 위한 노즐 형상 변수 민감도 연구)

  • Bae, Hong Yeol;Oh, Chang Young;Kim, Yun Jae;Kim, Kwon Hee;Chae, Soo Won;Kim, Ju Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.387-395
    • /
    • 2013
  • Recently, several circumferential cracks were found in the control rod drive mechanism (CRDM) nozzles of U.S. nuclear power plants. According to the accident analyses, coolant leaks were caused by primary water stress corrosion cracking (PWSCC). The tensile residual stresses caused by welding, corrosion sensitive materials, and boric acid solution cause PWSCC. Therefore, an exact estimation of the residual stress is important for reliable operation. In this study, finite element simulations were conducted to investigate the effects of the tube geometry (thickness and radius) on the residual stresses in a J-groove weld for different CRDM tube locations. Two different tube locations were considered (center-hole and steepest side hill tube), and the tube radius and thickness variables ($r_o/t$=2, 3, 4) included two different reference values ($r_o$=51.6, t=16.9mm).