• Title/Summary/Keyword: J gene

Search Result 994, Processing Time 0.03 seconds

Discovering Novel Genes of poultry in Genomic Era

  • S.K. Kang;Lee, B.C.;J.M. Lim;J.Y. Han;W.S. Hwang
    • Korean Journal of Poultry Science
    • /
    • v.28 no.2
    • /
    • pp.143-153
    • /
    • 2001
  • Using bioinformatic tools for searching the massive genome databases, it is possible to Identify new genes in few minutes for initial discoveries based on evolutionary conservation, domain homology, and tissue expression patterns, followed by further verification and characterization using the bench-top works. The development of high-density two-dimensional arrays has allowed the analysis of the expression of thousands of genes simultaneously in the humans, mice, rats, yeast, and bacteria to elucidate the genes and pathways involved in physiological processes. In addition, rapid and automated protein identification is being achieved by searching protein and nucleotide sequence databases directly with data generated from mass spectrometry. Recently, analysis at the bio-chemical level such as biochemical screening and metabolic profiling (Biochemical genomics) has been introduced as an additional approach for categorical assignment of gene function. To make advantage of recent achievements in computational approaches for facilitated gene discoveries in the avian model, chicken expression sequence tags (ESTs) have been reported and deposited in the international databases. By searching EST databases, a chicken heparanase gene was identified and functionally confirmed by subsequent experiments. Using combination of sub-tractive hybridization assay and Genbank database searches, a chicken heme -binding protein family (cSOUL/HBP) was isolated in the retina and pineal gland of domestic chicken and verified by Northern blot analysis. Microarrays have identified several host genes whose expression levels are elevated following infection of chicken embryo fibroblasts (CEF) with Marek's disease virus (MDV). The ongoing process of chicken genome projects and new discoveries and breakthroughs in genomics and proteomics will no doubt reveal new and exciting information and advances in the avian research.

  • PDF

Discrimination of Korean Cattle (Hanwoo) Using DNA Markers Derived from SNPs in Bovine Mitochondrial and SRY Genes

  • Yoon, D.;Kwon, Y.S.;Lee, K.Y.;Jung, W.Y.;Sasazaki, S.;Mannen, H.;Jeon, J.T.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.25-28
    • /
    • 2008
  • In order to distinguish Korean cattle (Hanwoo) beef from the imported beef from Australia in Korean markets, DNA markers based on PCR-RFLP from mitochondrial genes and SRY gene were applied. A total of 2,826 beef samples comprising 1,495 Hanwoo and 1,331 foreign cattle breeds were obtained in Korea. An 801 bp fragment of the SRY gene on the bovine Y chromosome, a 343 bp fragment of ND4 gene and a 528 bp fragment of ND5 gene in the bovine mtDNA were amplified by PCR and digested with three restriction enzymes, MseI, HpyCH4III and Tsp509I, respectively. The results showed that Bos taurus (T) type was the majority in Hanwoo by combining three markers (99.5%). However, 78.2% of Bos indicus (I) type was observed in the imported beef samples. These results indicated that three markers used in this study will be used as valuable markers for discriminating imported beef against Hanwoo.

Korean Red Ginseng and Rb1 restore altered social interaction, gene expressions in the medial prefrontal cortex, and gut metabolites under post-weaning social isolation in mice

  • Oh Wook Kwon;Youngja Hwang Park;Dalnim Kim;Hyog Young Kwon;Hyun-Jeong Yang
    • Journal of Ginseng Research
    • /
    • v.48 no.5
    • /
    • pp.481-493
    • /
    • 2024
  • Background: Post-weaning social isolation (SI) reduces sociability, gene expressions including myelin genes in the medial prefrontal cortex (mPFC), and alters microbiome compositions in rodent models. Korean Red Ginseng (KRG) and its major ginsenoside Rb1 have been reported to affect myelin formation and gut metabolites. However, their effects under post-weaning SI have not been investigated. This study investigated the effects of KRG and Rb1 on sociability, gene expressions in the mPFC, and gut metabolites under post-weaning SI. Methods: C57BL/6J mice were administered with water or KRG (150, 400 mg/kg) or Rb1 (0.1 mg/kg) under SI or regular environment (RE) for 2 weeks during the post-weaning period (P21-P35). After this period, mice underwent a sociability test, and then brains and ceca were collected for qPCR/immunohistochemistry and nontargeted metabolomics, respectively. Results: SI reduced sociability compared to RE; however, KRG (400 mg/kg) and Rb1 significantly restored sociability under SI. In the mPFC, expressions of genes related to myelin, neurotransmitter, and oxidative stress were significantly reduced in mice under SI compared to RE conditions. Under SI, KRG and Rb1 recovered the altered expressions of several genes in the mPFC. In gut metabolomics, 313 metabolites were identified as significant among 3027 detected metabolites. Among the significantly changed metabolites in SI, some were recovered by KRG or Rb1, including metabolites related to stress axis, inflammation, and DNA damage. Conclusion: Altered sociability, gene expression levels in the mPFC, and gut metabolites induced by two weeks of post-weaning SI were at least partially recovered by KRG and Rb1.

Protective Effects of Oleic Acid Against Palmitic Acid-Induced Apoptosis in Pancreatic AR42J Cells and Its Mechanisms

  • Ahn, Joung Hoon;Kim, Min Hye;Kwon, Hyung Joo;Choi, Soo Young;Kwon, Hyeok Yil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • Palmitic acid (PAM), one of the most common saturated fatty acid (SFA) in animals and plants, has been shown to induce apoptosis in exocrine pancreatic AR42J cells. In this study, we investigated cellular mechanisms underlying protective effects of oleic acid (OLA) against the lipotoxic actions of PAM in AR42J cells. Exposure of cells to long-chain SFA induced apoptotic cell death determined by MTT cell viability assay and Hoechst staining. Co-treatment of OLA with PAM markedly protected cells against PAM-induced apoptosis. OLA significantly attenuated the PAM-induced increase in the levels of pro-apoptotic Bak protein, cleaved forms of apoptotic proteins (caspase-3, PARP). On the contrary, OLA restored the decreased levels of anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-xL, and Mcl-1) in PAM-treated cells. OLA also induced up-regulation of the mRNA expression of Dgat2 and Cpt1 genes which are involved in triacylglycerol (TAG) synthesis and mitochondrial ${\beta}$-oxidation, respectively. Intracellular TAG accumulation was increased by OLA supplementation in accordance with enhanced expression of Dgat2 gene. These results indicate that restoration of anti-apoptotic/pro-apop-totic protein balance from apoptosis toward cell survival is involved in the cytoprotective effects of OLA against PAM-induced apoptosis in pancreatic AR42J cells. In addition, OLA-induced increase in TAG accumulation and up-regulation of Dgat2 and Cpt1 gene expressions may be possibly associated in part with the ability of OLA to protect cells from deleterious actions of PAM.

A report of 7 unrecorded bacterial species isolated from several Jeju soil samples in 2016

  • Kim, Ju-Young;Jang, Jun Hwee;Maeng, Soohyun;Kang, Myung-Suk;Kim, Myung Kyum
    • Journal of Species Research
    • /
    • v.7 no.2
    • /
    • pp.151-160
    • /
    • 2018
  • Seven bacterial strains, 15J4M-1, 15J13-8, 16MFM10, 15J1-8, SR1-5-4, 15J13-6, and 15J8-11 assigned to the phylum Actinobacteria, Bacteroidetes, and Firmicutes were isolated from soil samples collected from Jeju, Korea. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strains 15J4M-1, 15J13-8, 16MFM10, 15J1-8, SR1-5-4, 15J13-6, and 15J8-11 were most closely related to Bacillus selenatarsenatis $SF-1^T$ (with 99.4% similarity), Brevibacterium luteolum $CF87^T$ (99.5%), Carnobacterium iners CCUG $62000^T$ (99.6%), Exiguobacterium profundum $10C^T$ (99.3%), Larkinella insperata LMG $22510^T$ (99.3%), Pseudokineococcus lusitanus CECT $7306^T$ (99.4%), and Spirosoma endophyticum $EX36^T$ (99.3%), respectively. This is the first report of these seven species in Korea.

Effects of Danchisoyo-san on UVB-induced Cell Damage and Gene Expression in Dermal Fibroblast (단치소요산(丹梔逍遙散)이 자외선을 조사한 피부진피세포의 활성 및 유전자발현에 미치는 영향)

  • Lim, Hyun-Jung;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.24 no.2
    • /
    • pp.13-32
    • /
    • 2011
  • Objectives: This study was performed to elucidate the effects of Danchisoyo-san (DS) on cell damage and gene expression in UVB-exposed dermal fibroblast. Methods: To demonstrate the inhibitory effects of DS on aging of the skin, we used human dermal fibroblast(F6) and UVB light(30 mJ/$cm^2$) was used to damage to dermal fibroblast. We measured the nitrite production, LDH release, and gene expression in UVB-irradiated dermal fibroblast to elucidate the actionmechanism of DS. Also, we evaluated the amount of increased PICP, TIMP-1 in dermal fibroblast. PICP, TIMP-1 concentration was measured using EIA kit, and gene expression (MMP-1, procollagen, c-fos, c-jun, NF-kB, Bcl-2, Bcl-xL, iNOS) were determined using real-time PCR. Results: 1. DS inhibited LDH-release, nitrite production in UVB-irradiated dermal fibroblast. 2. DS suppressed the gene expression of MMP-1 in UVB-irradiated dermal fibroblast. 3. DS increased the gene expression of procollagen in UVB-iradiated dermal fibroblast. 4. DS suppressed the gene expression of c-jun, c-fos, NF-kB, iNOS in UVBirradiated dermal fibroblast. 5. DS increased the gene expression of Bcl-2 in UVB-iradiated dermal fibroblast. 6. DS increased the cell proliferation of dermal fibroblast. Conclusions: From the results, we concluded DS increases the cell proliferation and collagen synthesis in dermal fibroblast. So we suggest that DS has the antiwrinkle effects.