• Title/Summary/Keyword: Iterative-incremental approach

Search Result 22, Processing Time 0.03 seconds

Secant Method for Economic Dispatch with Generator Constraints and Transmission Losses

  • Chandram, K.;Subrahmanyam, N.;Sydulu, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.52-59
    • /
    • 2008
  • This paper describes the secant method for solving the economic dispatch (ED) problem with generator constraints and transmission losses. The ED problem is an important optimization problem in the economic operation of a power system. The proposed algorithm involves selection of minimum and maximum incremental costs (lambda values) and then the evaluation of optimal lambda at required power demand is done by secant method. The proposed algorithm has been tested on a power system having 6, 15, and 40 generating units. Studies have been made on the proposed method to solve the ED problem by taking 120 and 200 units with generator constraints. Simulation results of the proposed approach were compared in terms of solution quality, convergence characteristics, and computation efficiency with conventional methods such as lambda iterative method, heuristic methods such as genetic algorithm, and meta-heuristic methods like particle swarm optimization. It is observed from different case studies that the proposed method provides qualitative solutions with less computational time compared to various methods available in the literature.

Divergence-free algorithms for moment-thrust-curvature analysis of arbitrary sections

  • Chen, Liang;Liu, Si-Wei;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.557-569
    • /
    • 2017
  • Moment-thrust-curvatures ($M-P-{\Phi}$ curves) are fundamental quantities for detailed descriptions of basic properties such as stiffness and strength of a section under axial loads required for accurate computation of the deformations of reinforced concrete or composite columns. Currently, the finite-element-based methods adopting small fibers for analyzing a section are commonly used for generating the $M-P-{\Phi}$ curves and they require large amounts of computational time and effort. Further, the conventional numerical procedure using the force-control method might encounter divergence problems under high compression or tension. Therefore, this paper proposes a divergence-free approach, combining the use of the displacement-control and the Quasi-Newton scheme in the incremental-iterative procedure, for generating the $M-P-{\Phi}$ curves of arbitrary sections. An efficient method for computing the strength from concrete components is employed, where the stress integration is executed by layer-based algorithms. For easy modeling of residual stress, cross sections of structural steel components are meshed into fibers for strength resultants. The numerical procedure is elaborated in detail with flowcharts. Finally, extensive validating examples from previously published research are given for verifying the accuracy of the proposed method.

Analysis of shallow footings rested on tensionless foundations using a mixed finite element model

  • Lezgy-Nazargah, M.;Mamazizi, A.;Khosravi, H.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.379-394
    • /
    • 2022
  • Shallow footings usually belonged to the category of thick plate structures. For accurate analysis of thick plates, the contribution of out-of-plane components of the stress tensor should be considered in the formulation. Most of the available shallow footing models are based on the classical plate theories, which usually neglect the effects of the out-of-plane stresses. In this study, a mixed-field plate finite element model (FEM) is developed for the analysis of shallow footings rested on soil foundations. In addition to displacement field variables, the out-of-plane components of the stress tensor are also assumed as a priori unknown variables. For modeling the interaction effect of the soil under and outside of the shallow footings, the modified Vlasov theory is used. The tensionless nature of the supporting soil foundation is taken into account by adopting an incremental, iterative procedure. The equality requirement of displacements at the interface between the shallow footing and soil is fulfilled using the penalty approach. For validation of the present mixed FEM, the obtained results are compared with the results of 3D FEM and previous results published in the literature. The comparisons show the present mixed FEM is an efficient and accurate tool for solving the problems of shallow footings rested on subsoil.

Large Deflection and Elastoplastic Analysis of the Plane Framed Structure Using Isoparametric Curved Beam Element (Isoparametric 곡선(曲線) 보요소(要素)를 이용한 평면(平面)뼈대 구조물(構造物)의 대변형(大變形) 및 탄소성(彈塑性) 유한요소해석(有限要素解析))

  • Kim, Moon Young;Shin, Hyun Mock;Lee, Chang Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.41-49
    • /
    • 1993
  • This paper presents a geometrically non-linear and elastoplastic F.E. formulation using a total Lagrangian approach for the two dimensional isoparametric curved beam elements. The beam element is derived by using plane stress elements. The basic element geometry is constructed using the coordinates of the nodes on the element center line and the nodal point normals. The element displacement field is described using two translations of the node on the center line and a rotation about the axes normal to the plane containing the center line of the element. The layered approach is used for the elastoplastic analysis of the plane framed structure with the arbitrary cross section. The iterative load or displacement incremental method for non-linear finite element analysis of the frame structure is used. Numerical examples are presented to demonstrate the behavior and the accuracy of the proposed beam element for geometric and elastoplastic non-linear applications. Comparisons made with present theory and other published data show that tilt' beam element products accurate results with good convergence characteristics.

  • PDF

Partial Confinement Utilization for Rectangular Concrete Columns Subjected to Biaxial Bending and Axial Compression

  • Abd El Fattah, Ahmed M.;Rasheed, Hayder A.;Al-Rahmani, Ahmed H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.135-149
    • /
    • 2017
  • The prediction of the actual ultimate capacity of confined concrete columns requires partial confinement utilization under eccentric loading. This is attributed to the reduction in compression zone compared to columns under pure axial compression. Modern codes and standards are introducing the need to perform extreme event analysis under static loads. There has been a number of studies that focused on the analysis and testing of concentric columns. On the other hand, the augmentation of compressive strength due to partial confinement has not been treated before. The higher eccentricity causes smaller confined concrete region in compression yielding smaller increase in strength of concrete. Accordingly, the ultimate eccentric confined strength is gradually reduced from the fully confined value $f_{cc}$ (at zero eccentricity) to the unconfined value $f^{\prime}_c$ (at infinite eccentricity) as a function of the ratio of compression area to total area of each eccentricity. This approach is used to implement an adaptive Mander model for analyzing eccentrically loaded columns. Generalization of the 3D moment of area approach is implemented based on proportional loading, fiber model and the secant stiffness approach, in an incremental-iterative numerical procedure to achieve the equilibrium path of $P-{\varepsilon}$ and $M-{\varphi}$ response up to failure. This numerical analysis is adapted to assess the confining effect in rectangular columns confined with conventional lateral steel. This analysis is validated against experimental data found in the literature showing good correlation to the partial confinement model while rendering the full confinement treatment unsafe.

Anti Air Warfare analysis & Design of the Patrol Killer Experiment Combat System by the Model-Based-Simulation (모델 기반의 시뮬레이션 기법을 이용한 차기 고속정(Patrol Killer Experiment)용 전투체계 대공전 기능의 분석 및 설계)

  • Hwang, Kun-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.4
    • /
    • pp.23-31
    • /
    • 2007
  • Anti-Air Warfare(AAW) functionality of the naval combat system is the key functionality to ensure the ship's survivability. We have applied a novel method using model-based-simulation to analyze and design AAW functionality of the Patrol Killer Experimemnt Combat System. In this approach, an AAW functional model is described with the FSM(Finite State Machine) and directly executed for the AAW simulation. After prototyping using model based simulation, Hardware In Loop Simulation(HILS) is conducted as the AAW functionality is interfaced with the other ones of the combat system for completing the integration of the system components. This incremental and iterative development approach based on the model based simulation can minimize the development risks and costs caused by the system complexity for military system, bringing out the merit of the rapid prototyping.

  • PDF

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

  • Rad, Mohammad Hossein Ghadiri;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.77-92
    • /
    • 2020
  • The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.

CALS/EC Development Process Standardization Progress Direction (CALS/EC 개발 프로세스 표준화 발전방향)

  • 최헌준;이윤희
    • Proceedings of the CALSEC Conference
    • /
    • 1998.10a
    • /
    • pp.149-161
    • /
    • 1998
  • For the purpose of developing CALS/EC, it was surveyed ISO/IEC 12207 that was international standard and IEEE/EIA 12207 that was national standard in U.S.A and then peformed analysis comparing with MIL-STD-498 it was called origin of DoD software development process. Also it was surveyed software life cycle Process using doemstic defense area now Software life cycle process based on MIL-STD-498 in defense area was not yet includ the concept of new development philosophy like iterative development and process management according to the characteristics of project. For the purpose of improving software life cycle in defense area, first refined the process. And then on this study it was recommended accomodation of incremental and evolutionary development approach and the method of tailoring based on MIL-STD-498 was able to select and apply the process on the characteristics of project.

  • PDF

Development of a New Simplified Algorithm for Residual Longitudinal Strength Prediction of Asymmetrically Damaged Ships (비대칭 손상 선박의 잔류 종강도 평가를 위한 간이 해석 알고리즘 개발)

  • Choung, Joon-Mo;Nam, Ji-Myung;Lee, Min-Seong;Jeon, Sang-Ik;Ha, Tae-Bum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.281-287
    • /
    • 2011
  • This paper explains the basic theory and a new development of for the residual strength prediction program of the asymmetrically damaged ships, being capable of searching moment-curvature relations considering neutral axis mobility. It is noted that moment plane and neutral axis plane should be separately defined for asymmetric sections. The validity of the new program is verified by comparing moment-curvature curves of 1/3 scaled frigate model where the results from new algorithm well coincide with experimental and nonlinear FEA results for intact condition and with nonlinear FEA results for damaged condition. Applicability of new algorithm is also verified by applying VLCC model to the newly developed program. It is proved that reduction of residual strengths is visually presented using the new algorithm when damage specifications of ABS, DNV and IMO are applied. It is concluded that the new algorithm shows very good performance to produce moment-curvature relations with neutral axis mobility on the asymmetrically damaged ships. It is expected that the new program based on the developed algorithm can largely reduce design period of FE modeling and increase user conveniences.

A simple finite element formulation for large deflection analysis of nonprismatic slender beams

  • AL-Sadder, Samir Z.;Othman, Ra'ad A.;Shatnawi, Anis S.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.647-664
    • /
    • 2006
  • In this study, an improved finite element formulation with a scheme of solution for the large deflection analysis of inextensible prismatic and nonprismatic slender beams is developed. For this purpose, a three-noded Lagrangian beam-element with two dependent degrees of freedom per node (i.e., the vertical displacement, y, and the actual slope, $dy/ds=sin{\theta}$, where s is the curved coordinate along the deflected beam) is used to derive the element stiffness matrix. The element stiffness matrix in the global xy-coordinate system is achieved by means of coordinate transformation of a highly nonlinear ($6{\times}6$) element matrix in the local sy-coordinate. Because of bending with large curvature, highly nonlinear expressions are developed within the global stiffness matrix. To achieve the solution after specifying the proper loading and boundary conditions, an iterative quasi-linearization technique with successive corrections are employed considering these nonlinear expressions to remain constant during all iterations of the solution. In order to verify the validity and the accuracy of this study, the vertical and the horizontal displacements of prismatic and nonprismatic beams subjected to various cases of loading and boundary conditions are evaluated and compared with analytic solutions and numerical results by available references and the results by ADINA, and excellent agreements were achieved. The main advantage of the present technique is that the solution is directly obtained, i.e., non-incremental approach, using few iterations (3 to 6 iterations) and without the need to split the stiffness matrix into elastic and geometric matrices.