• Title/Summary/Keyword: Iterative scheme

Search Result 544, Processing Time 0.027 seconds

Numerical analysis of flow field around an automobile with variation of yaw angles (측풍의 편향각 변화에 따른 자동차 주위의 유동해석)

  • Kang D. M.;Jung Y. R.;Park W. G.;Ha S. D.
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.1-11
    • /
    • 1999
  • This paper describes the flow field analysis of an automobile with crosswind effects of 15°, 30° 45° and 60° of yaw angles. The governing equations of the 3-D incompressible Navier-Stokes equations are solved by the iterative time marching scheme. The Chimera grid technique has been applied to efficiently simulate the flow around the side-view mirror. The computated surface pressure coefficients have been compared with experimental results and a good agreement has been achieved. The A- and C-pillar vortex and other flow phenomena around the ground vehicle are evidently shown. The variation of aerodynamic coefficients of drag, lift, side force and moments with respect to yaw angle is systematically studied.

  • PDF

A HYBRID METHOD FOR A COUNTABLE FAMILY OF LIPSCHITZ GENERALIZED ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS AND AN EQUILIBRIUM PROBLEM

  • Cholamjiak, Prasit;Cholamjiak, Watcharaporn;Suantai, Suthep
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.335-351
    • /
    • 2013
  • In this paper, we introduce a new iterative scheme for finding a common element of the fixed points set of a countable family of uniformly Lipschitzian generalized asymptotically quasi-nonexpansive mappings and the solutions set of equilibrium problems. Some strong convergence theorems of the proposed iterative scheme are established by using the concept of W-mappings of a countable family of uniformly Lipschitzian generalized asymptotically quasi-nonexpansive mappings.

A Refined Semi-Analytic Sensitivity Study Based on the Mode Decomposition and Neumann Series Expansion (I) - Static Problem - (강체모드분리와 급수전개를 통한 준해석적 민감도 계산 방법의 개선에 관한 연구(I) - 정적 문제 -)

  • Cho, Maeng-Hyo;Kim, Hyun-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.585-592
    • /
    • 2003
  • Among various sensitivity evaluation techniques, semi-analytical method(SAM) is quite popular since this method is more advantageous than analytical method(AM) and global finite difference method(FDM). However, SAM reveals severe inaccuracy problem when relatively large rigid body motions are identified fur individual elements. Such errors result from the numerical differentiation of the pseudo load vector calculated by the finite difference scheme. In the present study, an iterative method combined with mode decomposition technique is proposed to compute reliable semi-analytical design sensitivities. The improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes and the error of SAM caused by numerical difference scheme is alleviated by using a Von Neumann series approximation considering the higher order terms for the sensitivity derivatives.

Study on the efficient dynamic system condensation (동적 해석의 효율적 축소 기법에 관한 연구)

  • Baek, Sung-Min;Cho, Meang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.631-636
    • /
    • 2007
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the, we proposed a two-level condensation scheme(TLCS) for the construction of a reduced system. In first step, the of candidate elements by energy estimation, Rayleigh quotient, through Ritz vector calculation, and next, the primary degrees of freedom is selected by sequential elimination from the degrees of freedom connected the candidate elements in the first step. In the present study, we propose TLCS combined with iterative improved reduced system(IIRS) to increase accuracy of higher modes intermediate range. Also, it possible to control the accuracy of the eigenvalues and eigenmodes of the reduced system. Numerical examples demonstrate performance of proposed method.

  • PDF

A Robust Nonlinear Control Using the Neural Network Model on System Uncertainty (시스템의 불확실성에 대한 신경망 모델을 통한 강인한 비선형 제어)

  • 이수영;정명진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.838-847
    • /
    • 1994
  • Although there is an analytical proof of modeling capability of the neural network, the convergency error in nonlinearity modeling is inevitable, since the steepest descent based practical larning algorithms do not guarantee the convergency of modeling error. Therefore, it is difficult to apply the neural network to control system in critical environments under an on-line learning scheme. Although the convergency of modeling error of a neural network is not guatranteed in the practical learning algorithms, the convergency, or boundedness of tracking error of the control system can be achieved if a proper feedback control law is combined with the neural network model to solve the problem of modeling error. In this paper, the neural network is introduced for compensating a system uncertainty to control a nonlinear dynamic system. And for suppressing inevitable modeling error of the neural network, an iterative neural network learning control algorithm is proposed as a virtual on-line realization of the Adaptive Variable Structure Controller. The efficiency of the proposed control scheme is verified from computer simulation on dynamics control of a 2 link robot manipulator.

  • PDF

Numerical Solution of Nonlinear Diffusion in One Dimensional Porous Medium Using Hybrid SOR Method

  • Jackel Vui Lung, Chew;Elayaraja, Aruchunan;Andang, Sunarto;Jumat, Sulaiman
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.699-713
    • /
    • 2022
  • This paper proposes a hybrid successive over-relaxation iterative method for the numerical solution of a nonlinear diffusion in a one-dimensional porous medium. The considered mathematical model is discretized using a computational complexity reduction scheme called half-sweep finite differences. The local truncation error and the analysis of the stability of the scheme are discussed. The proposed iterative method, which uses explicit group technique and modified successive over-relaxation, is formulated systematically. This method improves the efficiency of obtaining the solution in terms of total iterations and program elapsed time. The accuracy of the proposed method, which is measured using the magnitude of absolute errors, is promising. Numerical convergence tests of the proposed method are also provided. Some numerical experiments are delivered using initial-boundary value problems to show the superiority of the proposed method against some existing numerical methods.

An explicit approximation of the central angle for the curved interface in double-circle model for horizontal two-phase stratified flow

  • Taehwan Ahn;Dongwon Jeong;Jin-Yeong Bak;Jae Jun Jeong;Byongjo Yun
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3139-3143
    • /
    • 2024
  • Stratified flow in horizontal tubes is frequently observed in gas-liquid two-phase flow system. In the two-fluid modeling, it is important to define the interface shape in solving the balance equations to determine the key parameters such as the interfacial transfer terms, void fraction, and pressure drop. A double-circle model is usually introduced to depict the concave-down interface in a horizontal circular tube under the stratified-wavy flow condition. However, calculation of the central angle in the double-circle model, which represents the interfacial curvature, requires an appropriate iterative numerical root-finding scheme to solve the implicit transcendental equation. In this study, an explicit approximate equation has been proposed without requirement of the iterative scheme and numerical instability, which is expected to improve the coding process and computation efficiency in the analysis code with the two-fluid model.

Comparison of different iterative schemes for ISPH based on Rankine source solution

  • Zheng, Xing;Ma, Qing-wei;Duan, Wen-yang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.390-403
    • /
    • 2017
  • Smoothed Particle Hydrodynamics (SPH) method has a good adaptability for the simulation of free surface flow problems. There are two forms of SPH. One is weak compressible SPH and the other one is incompressible SPH (ISPH). Compared with the former one, ISPH method performs better in many cases. ISPH based on Rankine source solution can perform better than traditional ISPH, as it can use larger stepping length by avoiding the second order derivative in pressure Poisson equation. However, ISPH_R method needs to solve the sparse linear matrix for pressure Poisson equation, which is one of the most expensive parts during one time stepping calculation. Iterative methods are normally used for solving Poisson equation with large particle numbers. However, there are many iterative methods available and the question for using which one is still open. In this paper, three iterative methods, CGS, Bi-CGstab and GMRES are compared, which are suitable and typical for large unsymmetrical sparse matrix solutions. According to the numerical tests on different cases, still water test, dam breaking, violent tank sloshing, solitary wave slamming, the GMRES method is more efficient than CGS and Bi-CGstab for ISPH method.

Iterative Reliability-Based Modified Majority-Logic Decoding for Structured Binary LDPC Codes

  • Chen, Haiqiang;Luo, Lingshan;Sun, Youming;Li, Xiangcheng;Wan, Haibin;Luo, Liping;Qin, Tuanfa
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.339-345
    • /
    • 2015
  • In this paper, we present an iterative reliability-based modified majority-logic decoding algorithm for two classes of structured low-density parity-check codes. Different from the conventional modified one-step majority-logic decoding algorithms, we design a turbo-like iterative strategy to recover the performance degradation caused by the simply flipping operation. The main computational loads of the presented algorithm include only binary logic and integer operations, resulting in low decoding complexity. Furthermore, by introducing the iterative set, a very small proportion (less than 6%) of variable nodes are involved in the reliability updating process, which can further reduce the computational complexity. Simulation results show that, combined with the factor correction technique and a well-designed non-uniform quantization scheme, the presented algorithm can achieve a significant performance improvement and a fast decoding speed, even with very small quantization levels (3-4 bits resolution). The presented algorithm provides a candidate for trade-offs between performance and complexity.

A Power Control for OFDM Transmission Scheme in a Cochannel Interference Environment (동일 채널 간섭 환경에서 OFDM 전송 방식을 위한 송신 전력 제어)

  • Park, Jin-Kyu;Lim, Chang-Heon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3A
    • /
    • pp.271-280
    • /
    • 2007
  • This paper presents a power control scheme for OFDM based wireless communication systems in a multicell environment with co-channel interference which enables each system to achieve its target level of transmission bit rate. Generally, the optimal or near optimal power control scheme for multicarrier systems is Down to control the power level of each subcarrier in accordance with the associated channel status, which may be found in WF(waterfilling) and WF(iterative waterfilling) schemes. However, this requires the channel state information associated with every subchannel to be fed back from the receiver to its transmitter for successful power control. If the wireless channel exhibits relatively fast fading or the number of subcarriers is large, this may result in a considerable overhead. Here, in order to alleviate this problem, we propose a power control strategy for an OFDM systems maintaining the same power level over all the subcarriers. Also we prove its convergence, compare its complexity with that of the existing IWF algorithm, and examine its convergence characteristic through computer simulations.