• Title/Summary/Keyword: Iterative reconstruction

Search Result 194, Processing Time 0.026 seconds

CT Image Reconstruction of Wood Using Ultrasound Velocities II - Determination of the Initial Model Function of the SIRT Method -

  • Kim, Kwang-Mo;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.29-37
    • /
    • 2005
  • A previous study verified that the SIRT (simultaneous iterative reconstruction technique) method is more efficient than the back-projection method as a CT algorithm for wood. However, it was expected that the determination of the initial model function of the SIRT method would influence the quality of CT image. Therefore, in this study, we intended to develop a technique that could be used to determine an adequate initial model function. For this purpose, we proposed several techniques, and for each technique we examined the effects of the initial model function on the average errors and the CT image at each iteration. Through this study, it was shown that the average error was decreased and the image quality was improved using the proposed techniques. This tendency was most pronounced when the back-projection method was used to determine the initial model function. From the results of this study, we drew the following conclusions: 1) The initial model function of the SIRT method should be determined with careful attention, and 2) the back-projection method efficiently determines the initial model function of the SIRT method.

SCATTERING CORRECTION FOR IMAGE RECONSTRUCTION IN FLASH RADIOGRAPHY

  • Cao, Liangzhi;Wang, Mengqi;Wu, Hongchun;Liu, Zhouyu;Cheng, Yuxiong;Zhang, Hongbo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.529-538
    • /
    • 2013
  • Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency.

Bandwidth-Efficient OFDM Transmission with Iterative Cyclic Prefix Reconstruction

  • Lim, Jong-Bu;Kim, Eung-Sun;Park, Cheol-Jin;Won, Hui-Chul;Kim, Ki-Ho;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.239-252
    • /
    • 2008
  • For orthogonal frequency division multiplexing (OFDM), cyclic prefix (CP) should be longer than the length of channel impulse response, resulting in a loss of bandwidth efficiency. In this paper, we describe a new technique to restore the cyclicity of the received signal when the CP is not sufficient for OFDM systems. The proposed technique efficiently restores the cyclicity of the current received symbol by adding the weighted next received symbol to the current received symbol. Iterative CP reconstruction (CPR) procedure, based on the residual intersymbol interference cancellation (RISIC) algorithm, is analyzed and compared to the RISIC. In addition, we apply the CPR method to Alamouti space-time block coded (STBC) OFDM system. It is shown that in the STBC OFDM, tail cancellation as well as cyclic reconstruction of the CPR procedure should be repeated. The computational complexities of the RISIC, the proposed CPR, the RISIC with STBC, and the proposed CPR with STBC are analyzed and their performances are evaluated in multipath fading environments. We also propose an iterative channel estimation (CE) method for OFDM with insufficient CP. Further, we discuss the CE method for the STBC OFDM system with the CPR. It is shown that the CPR technique with the proposed CE method minimizes the loss of bandwidth efficiency due to the use of CP, without sacrificing the diversity gain of the STBC OFDM system.

Effect of Image quality and Radiation Dose using Iterative Reconstruction in Adult and Pediatric CT: A Phantom Study (성인과 소아 CT 촬영시 IR 적용에 따른 영상화질 및 선량에 미치는 영향)

  • Ju, A-ran;Jo, Jung-Hyun;Oh, Young-Kyu;Kim, Kyoung-Ki;Lee, Soo-Been;Jeon, Pil-Hyun;Kim, Daehong
    • The Korean Journal of Food & Health Convergence
    • /
    • v.4 no.1
    • /
    • pp.23-31
    • /
    • 2018
  • The main issue of CT is radiation dose reduction to patient. The purpose of this study was to estimate the image quality and dose by iterative reconstruction (IR) for adults and pediatrics. Adult and pediatric images of phantom were obtained with 120 and 140 kV, respectively, in accordance with radiation dose in terms of volume CT dose index ($CTDI_{vol}$): 10, 15, 20, 25, 30, 35 mGy. Then, the adult and the pediatric images are reconstructed by filtered-backprojection (FBP) and iterative reconstruction (IR). The images were analyzed by signal-to-noise ratio (SNR). SNR is improved when IR and 140 kV are applied to acquire adult and pediatric images. In the adult abdomen, according to diagnostic reference level, the SNR values of bone were increased about 27.84 % and 27.77 % at 120 kV and 140 kV, and the tissue's SNR values of the IR were increased about 29.84 % and 33.46 % 120 and 140 kV, respectively. Dose is reduced to 40% in adults abdomen images when using IR reconstruction. In pediatric images, the bone's SNR were also increased about 17.70% and 18.17 % at 120 kV and 140 kV. The tissue's SNR were increased about 26.73 % and 26.15 % at 120 kV and 140 kV. Radiation dose is reduced from 30% to 50% for bone and tissue images. In the case of examinations for adult and pediatric CT, IR technique reduces radiation dose to patient, and it could be applied to adult and pediatric imaging.

Impact of Model-Based Iterative Reconstruction on the Correlation between Computed Tomography Quantification of a Low Lung Attenuation Area and Airway Measurements and Pulmonary Function Test Results in Normal Subjects

  • Kim, Da Jung;Kim, Cherry;Shin, Chol;Lee, Seung Ku;Ko, Chang Sub;Lee, Ki Yeol
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1187-1195
    • /
    • 2018
  • Objective: To compare correlations between pulmonary function test (PFT) results and different reconstruction algorithms and to suggest the optimal reconstruction protocol for computed tomography (CT) quantification of low lung attenuation areas and airways in healthy individuals. Materials and Methods: A total of 259 subjects with normal PFT and chest CT results were included. CT scans were reconstructed using filtered back projection, hybrid-iterative reconstruction, and model-based IR (MIR). For quantitative analysis, the emphysema index (EI) and wall area percentage (WA%) were determined. Subgroup analysis according to smoking history was also performed. Results: The EIs of all the reconstruction algorithms correlated significantly with the forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) (all p < 0.001). The EI of MIR showed the strongest correlation with FEV1/FVC (r = -0.437). WA% showed a significant correlation with FEV1 in all the reconstruction algorithms (all p < 0.05) correlated significantly with FEV1/FVC for MIR only (p < 0.001). The WA% of MIR showed the strongest correlations with FEV1 (r = -0.205) and FEV1/FVC (r = -0.250). In subgroup analysis, the EI of MIR had the strongest correlation with PFT in both eversmoker and never-smoker subgroups, although there was no significant difference in the EI between the reconstruction algorithms. WA% of MIR showed a significantly thinner airway thickness than the other algorithms ($49.7{\pm}7.6$ in ever-smokers and $49.5{\pm}7.5$ in never-smokers, all p < 0.001), and also showed the strongest correlation with PFT in both ever-smoker and never-smoker subgroups. Conclusion: CT quantification of low lung attenuation areas and airways by means of MIR showed the strongest correlation with PFT results among the algorithms used, in normal subjects.

A Study on the Usefulness of Deep Learning Image Reconstruction with Radiation Dose Variation in MDCT (MDCT에서 선량 변화에 따른 딥러닝 재구성 기법의 유용성 연구)

  • Ga-Hyun, Kim;Ji-Soo, Kim;Chan-Deul, Kim;Joon-Pyo, Lee;Joo-Wan, Hong;Dong-Kyoon, Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.37-46
    • /
    • 2023
  • This study aims to evaluate the usefulness of Deep Learning Image Reconstruction (TrueFidelity, TF), the image quality of existing Filtered Back Projection (FBP) and Adaptive Statistical Iterative Reconstruction-Veo (ASIR-V) were compared. Noise, CNR, and SSIM were measured by obtaining images with doses fixed at 17.29 mGy and altered to 10.37 mGy, 12.10 mGy, 13.83 mGy, and 15.56 mGy in reconstruction techniques of FBP, ASIR-V 50%, and TF-H. TF-H has superior image quality compared to FBP and ASIR-V when the reconstruction technique change is given at 17.29 mGy. When dose changes were made, Noise, CNR, and SSIM were significantly different when comparing 10.37 mGy TF-H and FBP (p<0.05), and no significant difference when comparing 10.37 mGy TF-H and ASIR-V 50% (p>0.05). TF-H has a dose-reduction effect of 30%, as the highest dose of 15.56 mGy ASIR-V has the same image quality as the lowest dose of 10.37 mGy TF-H. Thus, Deep Learning Reconstruction techniques (TF) were able to reduce dose compared to Iterative Reconstruction techniques (ASIR-V) and Filtered Back Projection (FBP). Therefore, it is considered to reduce the exposure dose of patients.

Application of sigmoidal optimization to reconstruct nuclear medicine image: Comparison with filtered back projection and iterative reconstruction method

  • Shin, Han-Back;Kim, Moo-Sub;Law, Martin;Djeng, Shih-Kien;Choi, Min-Geon;Choi, Byung Wook;Kang, Sungmin;Kim, Dong-Wook;Suh, Tae Suk;Yoon, Do-Kun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.258-265
    • /
    • 2021
  • High levels for noise and a loss of true signal make the quantitative interpretation of nuclear medicine (NM) images difficult. An application of profile optimization using a sigmoidal function in this study was used to acquire the NM images with high quality. And the images were acquired by using three kinds of reconstruction method using each same sinogram: a standard filtered back-projection (FBP), an iterative reconstruction (IR) technique, and the sigmoidal function profile optimization (SFPO). Comparison of image according to reconstruction method was performed to show a superiority of the SFPO for imaging. The images reconstructed by using the SFPO showed an average of 1.49 times and of 1.17 times better in contrast than the results obtained using the standard FBP and the IR technique, respectively. Higher signal to noise ratios were obtained as an average of 12.30 times and of 3.77 times than results obtained using the standard FBP and the IR technique, respectively. This study confirms that reconstruction with SFPO (vs FBP and vs IR) can lead to better lesion detectability and characterization with noise reduction. It can be developed for future reconstruction technique for the NM imaging.

Snapping shrimp noise detection and mitigation for underwater acoustic orthogonal frequency division multiple communication using multilayer frequency

  • Ahn, Jongmin;Lee, Hojun;Kim, Yongcheol;Chung, Jeahak
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.258-269
    • /
    • 2020
  • This paper proposes Snapping Shrimp Noise (SSN) detection and corrupted Orthogonal Frequency Division Multiplexing (OFDM) reconstruction methods to increase Bit Error Rate (BER) performance when OFDM transmitted signal is corrupted by impulsive SSNs in underwater acoustic communications. The proposed detection method utilizes multilayer wavelet packet decomposition for detecting impulsive and irregularly concentrated and SSN energy in specific frequency bands of SSN, and the proposed reconstruction scheme uses iterative decision directed-subcarrier reconstruction to recover corrupted OFDM signals using multiple carrier characteristics. Computer simulations were executed to show receiver operating characteristics curve for the detection performance and BER for the reconstruction. The practical ocean experiment of SAVEX 15 demonstrated that the proposed method exhibits a better detection performance compared with conventional detection method and improves BER by 250% and 1230% for uncoded and coded data, respectively, compared with the conventional reconstruction scheme.

Three-Dimensional Shape Reconstruction from Images by Shape-from-Silhouette Technique and Iterative Triangulation

  • Cho, Jung-Ho;Samuel Moon-Ho Song
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1665-1673
    • /
    • 2003
  • We propose an image-based three-dimensional shape determination system. The shape, and thus the three-dimensional coordinate information of the 3-D object, is determined solely from captured images of the 3-D object from a prescribed set of viewpoints. The approach is based on the shape-from-silhouette (SFS) technique, and the efficacy of the SFS method is tested using a sample data set. The extracted three-dimensional shape is modeled with polygons generated by a new iterative triangulation algorithm, and the polygon model can be exported to commercial software. The proposed system may be used to visualize the 3-D object efficiently, or to quickly generate initial CAD data for reverse engineering purposes, including three dimensional design applications such as 3-D animation and 3-D games.