• Title/Summary/Keyword: Iterative reconstruction

Search Result 207, Processing Time 0.03 seconds

Image deblurring via adaptive proximal conjugate gradient method

  • Pan, Han;Jing, Zhongliang;Li, Minzhe;Dong, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4604-4622
    • /
    • 2015
  • It is not easy to reconstruct the geometrical characteristics of the distorted images captured by the devices. One of the most popular optimization methods is fast iterative shrinkage/ thresholding algorithm. In this paper, to deal with its approximation error and the turbulence of the decrease process, an adaptive proximal conjugate gradient (APCG) framework is proposed. It contains three stages. At first stage, a series of adaptive penalty matrices are generated iterate-to-iterate. Second, to trade off the reconstruction accuracy and the computational complexity of the resulting sub-problem, a practical solution is presented, which is characterized by solving the variable ellipsoidal-norm based sub-problem through exploiting the structure of the problem. Third, a correction step is introduced to improve the estimated accuracy. The numerical experiments of the proposed algorithm, in comparison to the favorable state-of-the-art methods, demonstrate the advantages of the proposed method and its potential.

Image Reconstruction of Dielectric Pipes by using Levenberg-Marquardt and Genetic Algorithm (Levenberg-Marquardt 알고리즘과 유전 알고리즘을 이용한 유전체 파이프의 영상재구성)

  • 김정석;나정웅
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.803-808
    • /
    • 2003
  • Several dielectric pipes buried in the lossy half space are reconstructed from the scattered fields measured along the interface between the air and the lossy ground. Iterative inversion method by using the hybrid optimization algorithm combining the genetic and the Levenberg-Marquardt algorithm enables us to find the positions, the sizes, and the medium parameters such as the permittivities and the conductivities of the buried pipes as well as those of the background lossy half space even when the dielectric pipes are close together. Illposedness of the inversion caused by the errors in the measured scattered fields are regularized by filtering the evanescent modes of the scattered fields out.

Curvature Based ECG Signal Compression for Effective Communication on WPAN

  • Kim, Tae-Hun;Kim, Se-Yun;Kim, Jeong-Hong;Yun, Byoung-Ju;Park, Kil-Houm
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • As electrocardiogram (ECG) signals are generally sampled with a frequency of over 200 Hz, a method to compress diagnostic information without losing data is required to store and transmit them efficiently on a wireless personal area network (WPAN). In this paper, an ECG signal compression method for communications onWPAN, which uses feature points based on curvature, is proposed. The feature points of P, Q, R, S, and T waves, which are critical components of the ECG signal, have large curvature values compared to other vertexes. Thus, these vertexes were extracted with the proposed method, which uses local extrema of curvatures. Furthermore, in order to minimize reconstruction errors of the ECG signal, extra vertexes were added according to the iterative vertex selectionmethod. Through the experimental results on the ECG signals from Massachusetts Institute of Technology-Beth Israel hospital arrhythmia database, it was concluded that the vertexes selected by the proposed method preserved all feature points of the ECG signals. In addition, it was more efficient than the amplitude zone time epoch coding method.

PROBLEMS IN INVERSE SCATTERING-ILLPOSEDNESS, RESOLUTION, LOCAL MINIMA, AND UNIQUENESSE

  • Ra, Jung-Woong
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.445-458
    • /
    • 2001
  • The shape and the distribution of material construction of the scatterer may be obtained from its scattered fields by the iterative inversion in the spectral domain. The illposedness, the resolution, and the uniqueness of the inversion are the key problems in the inversion and inter-related. The illposedness is shown to be caused by the evanescent modes which carries and amplifies exponentially the measurement errors in the back-propagation of the measured scattered fields. By filtering out all the evanescent modes in the cost functional defined as the squared difference between the measured and the calculated spatial spectrum of the scattered fields from the iteratively chosen medium parameters of the scatterer, one may regularize the illposedness of the inversion in the expense of the resolution. There exist many local minima of the cost functional for the inversion of the large and the high-contrast scatterer and the hybrid algorithm combining the genetic algorithm and the Levenberg-Marquardt algorithm is shown to find efficiently its global minimum. The resolution of reconstruction obtained by keeping all the propating modes and filtering out the evanescent modes for the regularization becomes 0.5 wavelength. The super resolution may be obtained by keeping the evanescent modes when the measurement error and instance, respectively, are small and near.

  • PDF

Retrieving Phase from Single Interferogram with Spatial Carrier Frequency by Using Morlet Wavelet

  • Hongxin Zhang;Mengyuan Cui
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.529-536
    • /
    • 2023
  • The Morlet wavelet transform method is proposed to analyze a single interferogram with spatial carrier frequency that is captured by an optical interferometer. The method can retain low frequency components that contain the phase information of a measured optical surface, and remove high frequency disturbances by wavelet decomposition and reconstruction. The key to retrieving the phases from the low-frequency wavelet components is to extract wavelet ridges by calculating the maximum value of the wavelet transform amplitude. Afterwards, the wrapped phases can be accurately solved by multiple iterative calculations on wavelet ridges. Finally, we can reconstruct the wave-front of the measured optical element by applying two-dimensional discrete cosine transform to those wrapped phases. Morlet wavelet transform does not need to remove the spatial carrier frequency components manually in the processing of interferogram analysis, but the step is necessary in the Fourier transform algorithm. So, the Morlet wavelet simplifies the process of the analysis of interference fringe patterns compared to Fourier transform. Consequently, wavelet transform is more suitable for automated programming analysis of interference fringes and avoiding the introduction of additional errors compared with Fourier transform.

Dark-Blood Computed Tomography Angiography Combined With Deep Learning Reconstruction for Cervical Artery Wall Imaging in Takayasu Arteritis

  • Tong Su;Zhe Zhang;Yu Chen;Yun Wang;Yumei Li;Min Xu;Jian Wang;Jing Li;Xinping Tian;Zhengyu Jin
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.384-394
    • /
    • 2024
  • Objective: To evaluate the image quality of novel dark-blood computed tomography angiography (CTA) imaging combined with deep learning reconstruction (DLR) compared to delayed-phase CTA images with hybrid iterative reconstruction (HIR), to visualize the cervical artery wall in patients with Takayasu arteritis (TAK). Materials and Methods: This prospective study continuously recruited 53 patients with TAK (mean age: 33.8 ± 10.2 years; 49 females) between January and July 2022 who underwent head-neck CTA scans. The arterial- and delayed-phase images were reconstructed using HIR and DLR. Subtracted images of the arterial-phase from the delayed-phase were then added to the original delayed-phase using a denoising filter to generate the final-dark-blood images. Qualitative image quality scores and quantitative parameters were obtained and compared among the three groups of images: Delayed-HIR, Dark-blood-HIR, and Dark-blood-DLR. Results: Compared to Delayed-HIR, Dark-blood-HIR images demonstrated higher qualitative scores in terms of vascular wall visualization and diagnostic confidence index (all P < 0.001). These qualitative scores further improved after applying DLR (Dark-blood-DLR compared to Dark-blood-HIR, all P < 0.001). Dark-blood DLR also showed higher scores for overall image noise than Dark-blood-HIR (P < 0.001). In the quantitative analysis, the contrast-to-noise ratio (CNR) values between the vessel wall and lumen for the bilateral common carotid arteries and brachiocephalic trunk were significantly higher on Dark-blood-HIR images than on Delayed-HIR images (all P < 0.05). The CNR values were significantly higher for Dark-blood-DLR than for Dark-blood-HIR in all cervical arteries (all P < 0.001). Conclusion: Compared with Delayed-HIR CTA, the dark-blood method combined with DLR improved CTA image quality and enhanced visualization of the cervical artery wall in patients with TAK.

Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation

  • Seul Bi Lee;Youngtaek Hong;Yeon Jin Cho;Dawun Jeong;Jina Lee;Soon Ho Yoon;Seunghyun Lee;Young Hun Choi;Jung-Eun Cheon
    • Korean Journal of Radiology
    • /
    • v.24 no.4
    • /
    • pp.294-304
    • /
    • 2023
  • Objective: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods. Materials and Methods: We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the paired t-test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) was used to assess the agreement between the segmented liver volume and ground-truth volume. Results: The original CT images showed variable and poor segmentation performances. The standardized images achieved significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%-91.27%] vs. [standardized, 93.16%-96.74%], all P < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 9.84%-91.37% vs. standardized, 1.99%-4.41%). In all protocols, CCCs improved after image conversion (original, -0.006-0.964 vs. standardized, 0.990-0.998). Conclusion: Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to improve the generalizability of the segmentation network.

Correction for SPECT image distortion by non-circular detection orbits (비원형 궤도에서의 검출에 의한 SPECT 영상 왜곡 보정)

  • Lee, Nam-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.156-162
    • /
    • 2007
  • The parallel beam SPECT system acquires projection data by using collimators in conjunction with photon detectors. The projection data of the parallel beam SPECT system is, however, blurred by the point response function of the collimator that is used to define the range of directions where photons can be detected. By increasing the number of parallel holes per unit area in collimator, one can reduce such blurring effect. This approach also, however, has the blurring problem if the distance between the object and the collimator becomes large. In this paper we consider correction methods for artifacts caused by non-circular orbit of parallel beam SPECT with many parallel holes per detector cell. To do so, we model the relationship between the object and its projection data as a linear system, and propose an iterative reconstruction method including artifacts correction. We compute the projector and the backprojector, which are required in iterative method, as a sum of convolutions with distance-dependent point response functions instead of matrix form, where those functions are analytically computed from a single function. By doing so, we dramatically reduce the computation time and memory required for the generation of the projector and the backprojector. We conducted several simulation studies to compare the performance of the proposed method with that of conventional Fourier method. The result shows that the proposed method outperforms Fourier methods objectively and subjectively.

  • PDF

Reliability of Skeletal Muscle Area Measurement on CT with Different Parameters: A Phantom Study

  • Dong Wook Kim;Jiyeon Ha;Yousun Ko;Kyung Won Kim;Taeyong Park;Jeongjin Lee;Myung-Won You;Kwon-Ha Yoon;Ji Yong Park;Young Jin Kee;Hong-Kyu Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.624-633
    • /
    • 2021
  • Objective: To evaluate the reliability of CT measurements of muscle quantity and quality using variable CT parameters. Materials and Methods: A phantom, simulating the L2-4 vertebral levels, was used for this study. CT images were repeatedly acquired with modulation of tube voltage, tube current, slice thickness, and the image reconstruction algorithm. Reference standard muscle compartments were obtained from the reference maps of the phantom. Cross-sectional area based on the Hounsfield unit (HU) thresholds of muscle and its components, and the mean density of the reference standard muscle compartment, were used to measure the muscle quantity and quality using different CT protocols. Signal-to-noise ratios (SNRs) were calculated in the images acquired with different settings. Results: The skeletal muscle area (threshold, -29 to 150 HU) was constant, regardless of the protocol, occupying at least 91.7% of the reference standard muscle compartment. Conversely, normal attenuation muscle area (30-150 HU) was not constant in the different protocols, varying between 59.7% and 81.7% of the reference standard muscle compartment. The mean density was lower than the target density stated by the manufacturer (45 HU) in all cases (range, 39.0-44.9 HU). The SNR decreased with low tube voltage, low tube current, and in sections with thin slices, whereas it increased when the iterative reconstruction algorithm was used. Conclusion: Measurement of muscle quantity using HU threshold was reliable, regardless of the CT protocol used. Conversely, the measurement of muscle quality using the mean density and narrow HU thresholds were inconsistent and inaccurate across different CT protocols. Therefore, further studies are warranted in future to determine the optimal CT protocols for reliable measurements of muscle quality.

The Evaluation of Reconstructed Images in 3D OSEM According to Iteration and Subset Number (3D OSEM 재구성 법에서 반복연산(Iteration) 횟수와 부분집합(Subset) 개수 변경에 따른 영상의 질 평가)

  • Kim, Dong-Seok;Kim, Seong-Hwan;Shim, Dong-Oh;Yoo, Hee-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • Purpose: Presently in the nuclear medicine field, the high-speed image reconstruction algorithm like the OSEM algorithm is widely used as the alternative of the filtered back projection method due to the rapid development and application of the digital computer. There is no to relate and if it applies the optimal parameter be clearly determined. In this research, the quality change of the Jaszczak phantom experiment and brain SPECT patient data according to the iteration times and subset number change try to be been put through and analyzed in 3D OSEM reconstruction method of applying 3D beam modeling. Materials and Methods: Patient data from August, 2010 studied and analyzed against 5 patients implementing the brain SPECT until september, 2010 in the nuclear medicine department of ASAN medical center. The phantom image used the mixed Jaszczak phantom equally and obtained the water and 99mTc (500 MBq) in the dual head gamma camera Symbia T2 of Siemens. When reconstructing each image altogether with patient data and phantom data, we changed iteration number as 1, 4, 8, 12, 24 and 30 times and subset number as 2, 4, 8, 16 and 32 times. We reconstructed in reconstructed each image, the variation coefficient for guessing about noise of images and image contrast, FWHM were produced and compared. Results: In patients and phantom experiment data, a contrast and spatial resolution of an image showed the tendency to increase linearly altogether according to the increment of the iteration times and subset number but the variation coefficient did not show the tendency to be improved according to the increase of two parameters. In the comparison according to the scan time, the image contrast and FWHM showed altogether the result of being linearly improved according to the iteration times and subset number increase in projection per 10, 20 and 30 second image but the variation coefficient did not show the tendency to be improved. Conclusion: The linear relationship of the image contrast improved in 3D OSEM reconstruction method image of applying 3D beam modeling through this experiment like the existing 1D and 2D OSEM reconfiguration method according to the iteration times and subset number increase could be confirmed. However, this is simple phantom experiment and the result of obtaining by the some patients limited range and the various variables can be existed. So for generalizing this based on this results of this experiment, there is the excessiveness and the evaluation about 3D OSEM reconfiguration method should be additionally made through experiments after this.

  • PDF