• 제목/요약/키워드: Iterative precision

검색결과 112건 처리시간 0.026초

냉간 단조 금형의 마멸 감소를 위한 예비성형체 설계방법 (Design Methodology of Preform for Reducing Tool Wear in Cold Forging)

  • 이진호;김태형;김병민
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.118-124
    • /
    • 1998
  • The die wear is one of the main factors affecting die accuracy and tool lifetime. It is desired to reduce die wear by developing simulation method to predict wear based on process variables, and then optimizing the process. Therefore, this paper describes methodology of preform design for minimizing wear of finisher die in multi-stage cold forging processes. The finite element method is combined with the routine of wear prediction. The cold forging process is analyzed using developed simulation method. In order to obtain preform to minimize die wear, the Flexible Polyhedron Search(FPS) algorithm is used. The optimal preform shape is found from iterative deformation analysis and wear calculation.

  • PDF

능동제어모세관을 이용한 유정압테이블의 운동정도 향상

  • 송영찬;박천홍;김수태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.250-256
    • /
    • 1997
  • For compensating the error motion of hydrostatic tables, we have introduced a way that the clarance of table is actively controlled corresponding to the amount of error with the nariable capillary,anmed as ACC. In previous paper,through the basic test, it was confirmed that by the use of ACC,the error motion within 2.7 .mu.m of a hydrostatic table could be compensated with the resolution of 27nm, 1/100 contollable range, and with the freqency bandwidth of 5.5Hz structurally. In this paper,we performed practital compensation of the linear and angular motion error of hydrostatic table using ACC. For improving the compensated motion accuracy,iterative control method is put into the control system. The experimental results show that by the simultaneous compensation of error,the linear and angular motion error are improved upto 0.25 .mu.m and 0.4arcsec,which are about 1/10 and 1/3 of the non-compensated motion errors respectively.

퍼지 간접추론법에 의한 비례-적분-미분 제어기의 점진적 자기동조

  • 김성동
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.182-186
    • /
    • 1992
  • A self tuning technique is derived for PID controllers which are widely used in industries. The tuning algorithm is based upon a fuzzy indirect reasoning method and an iterative technique. The fuzzy technique is considered to obtain ease and simplicity of tuning process. The PID gains for the first tuning action are determined by a method which is modified from the Ziegler-Nichols step response method. The first PID gains are determined to obtain a control performance so close to a design performance that the followed tuning process can be made effectively. The design parameters are given as time-domain variables which human is familiar with. The results of simulation studies show that the proped tuning method can produce an effective tuning for arbitaray design performances.

신경회로망을 이용한 시간최적 제어 (Time-optimal Control Utilizing Beural Networks)

  • Park, W.W.;J.S. Yoon
    • 한국정밀공학회지
    • /
    • 제14권6호
    • /
    • pp.90-98
    • /
    • 1997
  • A time-optimal control law for quick, strongly nonlinear systems has been developed and demonstrated. This procedure involves the utilzation of neural networks as state feedback controllers that learn the time-optimal control actions by means of an iterative minimization of both the final time and the final state error for the systems with constrained inputs and/or states. A neural identifier or a genetic algorithm identifier could be utilized for modeling the partially known systems and the unknown systems. The nature of neural networks as a parallel processor would circumvent the problem of "curwe of dimensionality". The control law has been demonstrated for both a torque input motor and a velocity input motor identified by a genetic algorithm called GENOCOPed GENOCOP.

  • PDF

타원형 저어널 베어링의 동특성 해석에 관한 연구 (A Study on Dynamics Characteristic Analysis of Elliptical Journal Bearing)

  • 박성환;오택열
    • 한국정밀공학회지
    • /
    • 제19권7호
    • /
    • pp.20-27
    • /
    • 2002
  • An analysis model for an elliptical fluid film bearing is described. The principles of hydrodynamic lubrication are outlined together with an expanded version of the governing pressure field equation as related to elliptical journal bearing. Finite element method approximations are given for the pressure field equation and a temperature model, both related to the fluid film thickness. The thermal effects in the lubricant viscosity, lubricant film thickness, variation of the journal rotating speed and influence of turbulence are investigated in this paper A finite element model and an iterative computational process are described, whereby full simultaneously converged field solutions for fluid film thickness, temperature, viscosity, pressure, stiffness and damping coefficient are obtained.

프로펠러 가공 전용 CAD/CAM 시스템 개발 (Development of a CAD/CAM System for Marine Propeller)

  • 전용태;윤재웅;박세형
    • 한국정밀공학회지
    • /
    • 제17권9호
    • /
    • pp.53-61
    • /
    • 2000
  • The manufacture of a marine propeller typically requires long lead time to generate 5-axis tool path. Hence it may take several weeks to manufacture a satisfactory propeller with a general purpose CAD/CAM system. In this research a dedicated 5-axis CAD/CAM system for machining marine propellers has been developed, The system employs various methods to enhance the productivity : interference-free tool path generation employing check vectors and optimum cutter size determinants. In addition an iterative NURBS modeling technique is used to improve the accuracy of the modeled surface and effective cutting conditions are determined and recommended empirically to increase the productivity. The proposed CAD/CAM system has been implemented with C++ and OpenGL graphic library on the Windows system. The system validation and sample results are also given and discussed.

  • PDF

압전재료와 점탄성 재료를 이용한 지능 복합적층보의 하이 브리드 진동제어 (Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material)

  • 강영규
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.148-153
    • /
    • 2001
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping hale been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

  • PDF

연속방전 시뮬레이션을 이용한 미세방전가공 표면의 예측 (Prediction of the Surface Machined by EDM Using Iterative Discharge Simulation)

  • 김태곤;민병권;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.509-510
    • /
    • 2006
  • Simulation of micro electrical discharge machining (micro-EDM) process using finite element analysis is proposed. Multiphysics model which has three steps; heat transfer analysis, structural analysis and electric field analysis is developed for simulation. Machined surface for successive five discharges is simulated using developed multiphysics model. Machined surface roughness was simulated under two discharge conditions and the simulated results are compared with actual machined surfaces. From the comparison it is demonstrated that the model can accurately predict the machined surface with the error less than $0.5{\mu}m$.

  • PDF

평기어의 동접촉 해석 (Dynamic Contact Analysis of Spur Gears)

  • 이기수;장태사
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.148-159
    • /
    • 1999
  • A numerical method is presented for the dynamic analysis of spur gears rotating with very high angular speeds. For an efficient computation each gear is assumed to consist of a rotating rigid disk and an elastic tooth having mass, and finite element formulations are used for the equations of motion of the tooth. The geometric constraint is imposed between the rigid disk and the elastic tooth to fix them, and contact condition is imposed between the meshing teeth of the gears. At each iteration of each time step the Lagrange multiplier and contact force are revised by using the constraint error vector, and then the whole equations of motion are time integrated with the given Lagrange multiplier and contact force. For the accurate solution the velocity and acceleration constraints as well as the displacement constraint are satisfied by the monotone reductions of the constraint error vectors. Computing procedures associated with the iterative schemes are explained and numerical simulations are conducted with the spur gears.

  • PDF

경계요소법을 이용한 계면균열의 응력특이성에 관한 고찰 (Study on the Stress Singularity of Interface Crack by using Boundary Element Method)

  • 조종두;곽시영
    • 한국정밀공학회지
    • /
    • 제16권4호통권97호
    • /
    • pp.197-204
    • /
    • 1999
  • The boundary element method was used for studying singularities of an interface crack with contact zones. The iterative procedure is applied to estimate the contact zone size. Because the contact zone size was extremely small in a tension field, a large number of Gaussian points were used for numerical integration of the Kernels. Stress extrapolation method and J-integral were used ofr determining stress intensity factors. When the interface crack was assumed to have opened tips, oscillatory singularities appear near the tips of the interface crack. But the interface crack with contact zone which Comninou suggested had no oscillatory behavior. The contact zone size under shear loading was much larger than that under tensile. The stress intensity factors computed by stress extrapolation method were close to those of Comninou's solution. And the stress intensity factor evaluated by J-integral was similar to that by stress extrapolation method.

  • PDF