• 제목/요약/키워드: Iterative Solution Technique

검색결과 105건 처리시간 0.028초

MONOTONE ITERATIVE TECHNIQUE FOR IMPULSIVE DIFFERENTIAL EQUATIONS WITH TIME VARIABLES

  • Qi, Jian-Gang;Liu, Yan-Sheng
    • Journal of applied mathematics & informatics
    • /
    • 제7권2호
    • /
    • pp.539-552
    • /
    • 2000
  • In this paper, we established the general comparison principles for IVP of impulsive differential equations with time variables, which strictly extend and improve the precious comparison results obtained by V. Lakes. et.al . and S.K.Kaul([3]-[7]). Whit the general comparison results, we constructed the monotone iterative sequences of solution for IVP of such equations which converges the maximal and minimal and minimal solutions , respectively.

반복 계산법 및 계산 가속기법에 의한 다물체 동역학 해법 (An Accelerated Iterative Method for the Dynamic Analysis of Multibody Systems)

  • 이기수;임철호
    • 대한기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.899-909
    • /
    • 1992
  • 본 연구에서는 대수 미분 방정식을 풀기위한 새로운 방법을 소개한다. 본 작업에서는 Lagrange multiplier의 값이 사전에 주어졌다고 생각하여, 즉 대수 미분 방정식을 순수한 상미분 방정식으로 변환하여, 잘 알려진 시간 적분법을 적용한다. 또 정확한 Lagrange Multiplier값은 반복 계산법(iterative scheme)에 의하여 계산한 다. 시간 적분의 정확도와 제한 조건의 정확도는 모두 보장된다. 특히 제한 조건 의 경우, 위치, 속도 및 가속도의 제한 조건이 모두 만족된다. 또 정확한 Lagrange multiplier의 값을 계산 가속기법(acceleration technique)에 의하여 대단히 빨리 계 산한다. 독립 좌표를 구할 필요가 없으므로 거대한 행열을 decomposition하는 등의 복잡한 절차가 불필요하며 N-R 반복법 역시 불필요하다. 이러한 사항들 및 Jacobian 행열의 sparsity로 인하여 경제적인 계산이 가능하게 된다.

SOLVING QUASIMONOTONE SPLIT VARIATIONAL INEQUALITY PROBLEM AND FIXED POINT PROBLEM IN HILBERT SPACES

  • D. O. Peter;A. A. Mebawondu;G. C. Ugwunnadi;P. Pillay;O. K. Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권1호
    • /
    • pp.205-235
    • /
    • 2023
  • In this paper, we introduce and study an iterative technique for solving quasimonotone split variational inequality problems and fixed point problem in the framework of real Hilbert spaces. Our proposed iterative technique is self adaptive, and easy to implement. We establish that the proposed iterative technique converges strongly to a minimum-norm solution of the problem and give some numerical illustrations in comparison with other methods in the literature to support our strong convergence result.

A RANDOM GENERALIZED NONLINEAR IMPLICIT VARIATIONAL-LIKE INCLUSION WITH RANDOM FUZZY MAPPINGS

  • Khan, F.A.;Aljohani, A.S.;Alshehri, M.G.;Ali, J.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권4호
    • /
    • pp.717-731
    • /
    • 2021
  • In this paper, we introduce and study a new class of random generalized nonlinear implicit variational-like inclusion with random fuzzy mappings in a real separable Hilbert space and give its fixed point formulation. Using the fixed point formulation and the proximal mapping technique for strongly maximal monotone mapping, we suggest and analyze a random iterative scheme for finding the approximate solution of this class of inclusion. Further, we prove the existence of solution and discuss the convergence analysis of iterative scheme of this class of inclusion. Our results in this paper improve and generalize several known results in the literature.

AN ITERATIVE METHOD FOR NONLINEAR MIXED IMPLICIT VARIATIONAL INEQUALITIES

  • JEONG, JAE UG
    • 호남수학학술지
    • /
    • 제26권4호
    • /
    • pp.391-399
    • /
    • 2004
  • In this paper, we develop an iterative algorithm for solving a class of nonlinear mixed implicit variational inequalities in Hilbert spaces. The resolvent operator technique is used to establish the equivalence between variational inequalities and fixed point problems. This equivalence is used to study the existence of a solution of nonlinear mixed implicit variational inequalities and to suggest an iterative algorithm for solving variational inequalities. In our results, we do not assume that the mapping is strongly monotone.

  • PDF

튜브형 단면겹치기 접착조인트의 비선형 반복연산해에 관한 연구 (Nonlinear Iterative Solution for Adhesively Bonded Tubular Single Lap Joints with Nonlinear Shear Properties)

  • 이수정;이대길
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1651-1656
    • /
    • 1995
  • The adhesively bonded tubular single lap joint shows large nonlinear behavior in the loaddisplacement relation, because structural adhesives for the joint are usually rubber toughened, which endows adhesives with nonlinear shear properties. since the majority of load transfer of the adhesively bonded tubular single lap joint is accomplished by the nonlinear behavior of the adhesive, its torque transmission capability should be calculated incorporating nonlinear shear properties. However, both the analytic and numerical analyses become complicated if the nonlinear shear properties of the adhesive are included during the calculation of torque transmission capabilities. In this paper, in order to obtain the torque transmission capabilities easily, an iterative solution which includes the nonlinear shear properties of the adhesive was derived using the analytic solution with the linear shear properties of the adhesive. Since the iterative solution can be obtained very fast due to its simplicity, it has been found that it can be used in the design of the adhesively bonded tubular single lap joint.

EXISTENCE AND ITERATION OF POSITIVE SOLUTION FOR A THREE-POINT BOUNDARY VALUE PROBLEM WITH A p-LAPLACIAN OPERATOR

  • Ma, De-Xiang
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.329-337
    • /
    • 2007
  • In the paper, we obtain the existence of positive solutions and establish a corresponding iterative scheme for BVPs $$\{^{\;(\phi_p(u'))'\;+\;q(t)f(t,u)=0,\;0\;<\;t\;<\;1,}_{\;u(0)\;-\;B(u'({\eta}))\;=\;0,\;u'(1)\;=\;0}$$ and $$\{^{\;(\phi_p(u'))'\;+\;q(t)f(t,u)=0,\;0\;<\;t\;<\;1,}_{\;u'(0)\;=\;0,\;u(1)+B(u'(\eta))\;=\;0.}$$. The main tool is the monotone iterative technique. Here, the coefficient q(t) may be singular at t = 0, 1.

AUXILIARY PRINCEPLE AND ERROR ESTIMATES FOR VARIATIONAL INEQUALITIES

  • NOOR, MUHAMMED ASLAM
    • 호남수학학술지
    • /
    • 제15권1호
    • /
    • pp.105-120
    • /
    • 1993
  • The auxiliary principle technique is used to prove the uniqueness and the existence of solutions for a class of nonlinear variational inequalities and suggest an innovative iterative algorithm for computing the approximate solution of variational inequalities. Error estimates for the finite element approximation of the solution of variational inequalities are derived, which refine the previous known results. An example is given to illustrate the applications of the results obtained. Several special cases are considered and studied.

  • PDF

Revised Iterative Goal Programming Using Sparsity Technique on Microcomputer

  • Gen, Mitsuo;Ida, Kenichi;Lee, Sang M.
    • 한국경영과학회지
    • /
    • 제10권1호
    • /
    • pp.14-30
    • /
    • 1985
  • Recently, multiple criteria decision making has been well established as a practical approach to seek a satisfactory solution to a decision making problem. Goal programming is one of the most powerful MCDM tools with satisfying operational assumptions that reflect the actual decision making process in real-world situations. In this paper we propose an efficient method implemented on a microcomputer for solving linear goal programming problems. It is an iterative revised goal simplex method using the sparsity technique. We design as interactive software package for microcomputers based on this method. From some computational experiences, we can state that the revised iterative goal simplex method using the sparsity technique is the most efficient one for microcomputer for solving goal programming problems.

  • PDF

Advances in solution of classical generalized eigenvalue problem

  • Chen, P.;Sun, S.L.;Zhao, Q.C.;Gong, Y.C.;Chen, Y.Q.;Yuan, M.W.
    • Interaction and multiscale mechanics
    • /
    • 제1권2호
    • /
    • pp.211-230
    • /
    • 2008
  • Owing to the growing size of the eigenvalue problem and the growing number of eigenvalues desired, solution methods of iterative nature are becoming more popular than ever, which however suffer from low efficiency and lack of proper convergence criteria. In this paper, three efficient iterative eigenvalue algorithms are considered, i.e., subspace iteration method, iterative Ritz vector method and iterative Lanczos method based on the cell sparse fast solver and loop-unrolling. They are examined under the mode error criterion, i.e., the ratio of the out-of-balance nodal forces and the maximum elastic nodal point forces. Averagely speaking, the iterative Ritz vector method is the most efficient one among the three. Based on the mode error convergence criteria, the eigenvalue solvers are shown to be more stable than those based on eigenvalues only. Compared with ANSYS's subspace iteration and block Lanczos approaches, the subspace iteration presented here appears to be more efficient, while the Lanczos approach has roughly equal efficiency. The methods proposed are robust and efficient. Large size tests show that the improvement in terms of CPU time and storage is tremendous. Also reported is an aggressive shifting technique for the subspace iteration method, based on the mode error convergence criteria. A backward technique is introduced when the shift is not located in the right region. The efficiency of such a technique was demonstrated in the numerical tests.