• Title/Summary/Keyword: Iterative Finite Element Simulation

Search Result 34, Processing Time 0.023 seconds

Identification of Complex Dispersion Relations in Cylindrical, Foam-Lined Ducts

  • Kim, Yong-Joe;Bolton, J. Stuart;Lee, Sung-Yop;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1729-1734
    • /
    • 2000
  • Complex dispersion relations in a cylindrical, foam-lined duct were successfully identified by using an iterative Prony series method. Techniques for using the iterative procedure successfully are described in detail, particularly with regard to model order selection and the identification of parameter starting values. It is shown that modal wave speeds and spatial attenuations per wavelength can be derived from the complex dispersion relations obtained using the iterative procedure. In addition, a finite element simulation is shown to well represent corresponding experimental measurement in terms of modal wave speeds and spatial attenuations.

  • PDF

Nonlinear Structural Safety Assessment under Dynamic Excitation Using SFEM (추계론적 유한 요소법을 이용한 동하중을 받는 비선형 구조물의 안전성 평가)

  • Huh, Jungwon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.373-384
    • /
    • 2000
  • To assess the safety of nonlinear steel frame structures subjected to short duration dynamic loadings, especially seismic loading, a nonlinear time domain reliability analysis procedure is proposed in the context of the stochastic finite element concept. In the proposed algorithm, the finite element formulation is combined with concepts of the response surface method, the first order reliability method, and the iterative linear interpolation scheme. This leads to the stochastic finite element concept. Actual earthquake loading time-histories are used to excite structures, enabling a realistic representation of the loading conditions. The assumed stress-based finite element formulation is used to increase its efficiency. The algorithm also has the potential to evaluate the risk associated with any linear or nonlinear structure that can be represented by a finite element algorithm subjected to seismic loading or any short duration dynamic loading. The algorithm is explained with help of an example and verified using the Monte Carlo simulation technique.

  • PDF

Large deformation bending analysis of functionally graded spherical shell using FEM

  • Kar, Vishesh Ranjan;Panda, Subrata Kumar
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.661-679
    • /
    • 2015
  • In this article, nonlinear finite element solutions of bending responses of functionally graded spherical panels are presented. The material properties of functionally graded material are graded in thickness direction according to a power-law distribution of volume fractions. A general nonlinear mathematical shallow shell model has been developed based on higher order shear deformation theory by taking the geometric nonlinearity in Green-Lagrange sense. The model is discretised using finite element steps and the governing equations are obtained through variational principle. The nonlinear responses are evaluated through a direct iterative method. The model is validated by comparing the responses with the available published literatures. The efficacy of present model has also been established by demonstrating a simulation based nonlinear model developed in ANSYS environment. The effects of power-law indices, support conditions and different geometrical parameters on bending behaviour of functionally graded shells are obtained and discussed in detail.

Methodology of Perform Design for Reducing Tool Wear in Cold Forging (냉간 단조 금형의 마멸 감소를 위한 예비성형체 설계방법)

  • 이진호;고대철;김태형;김병민;최재찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.164-167
    • /
    • 1997
  • The die wear is one of the main factors affecting die accuracy and tool lifetime. It is desired to reduce die wear by developing simulation method to predict wear based on process parameters, and then optimize the process. Therefore, this paper describes disign methodology of preform for minimizing wear of finisher die in multi-stage cold forging processes. The finite element method is combined with the routine of wear prediction and the cold forging processes. The finite element method is combined with the routine of wear prediction and the cold forging process is analyzed. In order to obtain preform to minimize die wear, the FPS algorithm is applied and the optimal preform shape is found from iterative deformation analysis and wear calculation.

  • PDF

Damage detection using finite element model updating with an improved optimization algorithm

  • Xu, Yalan;Qian, Yu;Song, Gangbing;Guo, Kongming
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.191-208
    • /
    • 2015
  • The sensitivity-based finite element model updating method has received increasing attention in damage detection of structures based on measured modal parameters. Finding an optimization technique with high efficiency and fast convergence is one of the key issues for model updating-based damage detection. A new simple and computationally efficient optimization algorithm is proposed and applied to damage detection by using finite element model updating. The proposed method combines the Gauss-Newton method with region truncation of each iterative step, in which not only the constraints are introduced instead of penalty functions, but also the searching steps are restricted in a controlled region. The developed algorithm is illustrated by a numerically simulated 25-bar truss structure, and the results have been compared and verified with those obtained from the trust region method. In order to investigate the reliability of the proposed method in damage detection of structures, the influence of the uncertainties coming from measured modal parameters on the statistical characteristics of detection result is investigated by Monte-Carlo simulation, and the probability of damage detection is estimated using the probabilistic method.

Prediction of the Surface Machined by EDM Using Iterative Discharge Simulation (연속방전 시뮬레이션을 이용한 미세방전가공 표면의 예측)

  • Kim T.G.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.509-510
    • /
    • 2006
  • Simulation of micro electrical discharge machining (micro-EDM) process using finite element analysis is proposed. Multiphysics model which has three steps; heat transfer analysis, structural analysis and electric field analysis is developed for simulation. Machined surface for successive five discharges is simulated using developed multiphysics model. Machined surface roughness was simulated under two discharge conditions and the simulated results are compared with actual machined surfaces. From the comparison it is demonstrated that the model can accurately predict the machined surface with the error less than $0.5{\mu}m$.

  • PDF

Free vibration analysis of continuous bridge under the vehicles

  • Tan, Guojin;Wang, Wensheng;Jiao, Yubo;Wei, Zhigang
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.335-345
    • /
    • 2017
  • Free vibration analysis for continuous bridge under any number of vehicles is conducted in this paper. Calculation strategy for natural frequency and mode shape is proposed based on Euler-Bernoulli beam theory and numerical assembly method. Firstly, a half-car planar model is adopted; equations of motion and displacement functions for bridge and vehicle are established, respectively. Secondly, the undermined coefficient matrices for wheels, vehicles, intermediate support, left-end support and right-end support are derived. Then, the numerical assembly technique for conventional finite element method is adopted to construct the overall matrix of coefficients for whole system. Finally, natural frequencies and corresponding mode shapes are determined based on iterative method and overall matrix solution. Numerical simulation is presented to verify the effectiveness of the proposed method. The results reveal that the solutions of present method are exact ones. Natural frequencies and associate modal shapes of continuous bridge under different conditions of vehicles are investigated. The influences of vehicle parameters on natural frequencies are also demonstrated.

Time Reduction for Package Warpage Optimization based on Deep Neural Network and Bayesian Optimization (심층신경망 및 베이지안 최적화 기반 패키지 휨 최적화 시간 단축)

  • Jungeon Lee;Daeil Kwon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.3
    • /
    • pp.50-57
    • /
    • 2024
  • Recently, applying a machine learning to surrogate modeling for rapid optimization of complex designs have been widely researched. Once trained, the machine learning surrogate model can predict similar outputs to Finite Element Analysis (FEA) simulations but require significantly less computing resources. In addition, combined with optimization methodologies, it can identify optimal design variable with less time requirement compared to iterative simulation. This study proposes a Deep Neural Network (DNN) model with Bayesian Optimization (BO) approach for efficiently searching the optimal design variables to minimize the warpage of electronic package. The DNN model was trained by using design variable-warpage dataset from FEA simulation, and the Bayesian optimization was applied to find the optimal design variables which minimizing the warpage. The suggested DNN + BO model shows over 99% consistency compared to actual simulation results, while only require 15 second to identify optimal design variable, which reducing the optimization time by more than 57% compared to FEA simulation.

ON THE TREATMENT OF DUCTILE FRACTURE BY THE LOCAL APPROACH CONCEPT IN CONTINUUM DAMAGE MECHANICS : THEORY AND EXAMPLE

  • Kim, Seoung-Jo;Kim, Jin-Hee;Kim, Wie-Dae
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.31-50
    • /
    • 1996
  • In this paper, a finite element analysis based on the local approach concept to fracture in the continuum damage mechanics is performed to analyze ductile fracture in two dimensional quasi-static state. First an isotropic damage model based on the generalized concept of effective stress is proposed for structural materials in the context of large deformation. In this model, the stiffness degradation is taken as a measure of damage and so, the fracture phenomenon can be explained as the critical deterioration of stiffness at a material point. The modified Riks' continuation technique is used to solve incremental iterative equations. Crack propagation is achieved by removing critically damaged elements. The mesh size sensitivity analysis and the simulation of the well known shearing mode failure in plane strain state are carried out to verify the present formulation. As numerical examples, an edge cracked plate and the specimen with a circular hole under plane stress are taken. Load-displacement curves and successively fractured shapes are shown. From the results, it can be concluded that the proposed model based on the local approach concept in the continuum damage mechanics may be stated as a reasonable tool to explain ductile fracture initiation and crack propagation.

Application of a fixed Eulerian mesh-based scheme based on the level set function generated by virtual nodes to large-deformation fluid-structure interaction

  • Hashimoto, Gaku;Ono, Kenji;Okuda, Hiroshi
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.287-318
    • /
    • 2012
  • We apply a partitioned-solution (iterative-staggered) coupling method based on a fixed Eulerian mesh with the level set function to a large-deformation fluid-structure interaction (FSI) problem where a large-deformable thin structure moves in a high-speed flow field, as an airbag does during deployment. This method combines advanced fluid and structure solvers-specifically, the constrained interpolation profile finite element method (CIP-FEM) for fluid Eulerian mesh and large-deformable structural elements for Lagrangian structural mesh. We express the large-deformable interface as a zero isosurface by the level set function, and introduce virtual nodes with level sets and structural normal velocities to generate the level set function according to the large-deformable interfacial geometry and enforce the kinematic condition at the interface. The virtual nodes are located in the direction normal to the structural mesh. It is confirmed that application of the method to unfolded airbag deployment simulation shows the adequacy of the method.