• Title/Summary/Keyword: Iterative Calculation

Search Result 213, Processing Time 0.032 seconds

The Calculation Method with index for the Transfer Power limit to Capital Area (지수를 적용한 수도권 융통전력한계량 계산)

  • Lee, Woon-Hee;Kang, Myung-Jang;Song, Suk-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.50-52
    • /
    • 2008
  • We have limited the transfer power to capital area below a certain level which is called "The Capital Area Transfer Power Limit", and calculated on every Thursday for the application next week. This level is very important in our network operation, because if this level is not set properly, our power network can be fallen under great danger in case of a fault among the transfer power line. But the calculation procedure for the limit level is so complicated and iterative that it mace us spend much time and do much work. So, when a sudden trip of the related facility to the limit level we can't recalculate the limit level fast enough. And this can drop our network reliability below our standards, therefore our network can be dangerous. To avoid this kind of problems, we have figured out a method to calculate simply the limit level. That method uses the index related to the level. We think this method can make short of the calculation procedures for the level. This paper deals with the simplified method for the calculation of the level limit.

  • PDF

A Study on the Quasi-3-Dimensional Compressible Flow Calculation by Introduction of Viscous Loss Model in Axial-Flow Compressor (점성 손실모델 도입에 의한 축류 압축기 준 3차원 압축성 유동해석)

  • 조강래;이진호;김주환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.1044-1051
    • /
    • 1989
  • A numerical calculation is carried out for the analysis of 3-dimensional compressible flow field in axial-flow rotating blades by using finite element method. The calculation of flow in impellers plays a dominant role in the theoretical research and design of turbomachines. Three-dimensional flow fields can be obtained by the quasi-three-dimensional iterative calculation of the flows both on blade-to-blade stream surfaces and hub-to-shroud stream surfaces with the introduction of viscous loss model in order to consider a loss due to viscosity of fluid. In devising the loss model, four primary sources of losses were identified: (1) blade profile loss (2) end wall loss (3) secondary flow loss (4) tip-leakage loss. For the consideration of an axially parabolic distribution of loss, the results of present calcullation are well agreed with the results by experiment, thus the introduction of loss model is proved to be valid.

Efficient Iterative Physical Optics(IPO) Algorithms for Calculation of RCS (RCS 계산을 위한 효율적인 IPO 계산 방법)

  • Lee, Hyunsoo;Jung, Ki-Hwan;Chae, Dae-Young;Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.601-606
    • /
    • 2014
  • The IPO(Iterative Physical Optics) method repeatedly applies the well-known PO(Physical Optics) approximation to calculate the scattered field by a large object. Thus, the IPO method can consider the multiple scattering in the object, which is ignored for the PO approximation. This kind of iteration can improve the final accuracy of the induced current on the scatterer, which can result in the enhancement of the accuracy of the RCS(Radar Cross Section) of the scatterer. Since the IPO method can not exactly but approximately solve the required integral equation, however, the convergence of the IPO solution can not be guaranteed. Hence, we apply the famous techniques used in the inversion of a matrix to the IPO method, which include Jacobi, Gauss-Seidel, SOR(Successive Over Relaxation) and Richardson methods. The proposed IPO methods can efficiently calculate the RCS of a large scatterer, and are numerically verified.

A PLANE-PARALLEL MODEL OF THE DIFFUSE GALACTIC LIGHT (확산 은하 복사광에 대한 평면 평행 모델)

  • Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • A plane-parallel model of the diffuse Galactic light (DGL) is calculated assuming exponential disks of interstellar dust and OB stars, by solving exactly the radiative transfer equation using an iterative method. We perform a radiative transfer calculation for a model with generally accepted scale heights of stellar and dust distribution and compare the results with those of van de Hulst & de Jong for a constant slab model. We also find that the intensity extrapolated to zero dust optical depth has a negative value, against to the usual expectation.

Calculation of residual stresses by thermal elasto-plastic analysis (열탄소성 해석에 의한 잔류응력의 계산)

  • 장창두;서승일
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.35-43
    • /
    • 1988
  • Welding residual stresses were calculated by two dimensional thermal elasto-plastic analysis using element method. Complicated plastic behavior during heat transfer was simulated with time. Fist, temperature distributions. To consider time varying behavior of material properties and loading and unloading processes, iterative calculation based on initial stiffness method was carried out. The method proposed by Yamata was used in time increment control which determined the accuracy of claculation. comparison with other caculated and experimental results shows fairly good agreement.

  • PDF

A Simple Method for Conducting Angle Calculation of Switch Devices in Cascaded Inverters Using Step Pulse Waves (스텝 펄스파를 사용하는 캐스케이드 인버터에서 스위치의 간단한 도통각 계산법)

  • Kim H.C.;Kim T.J.;Kang D.W.;Hyun D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.588-592
    • /
    • 2003
  • In recent years, the multilevel inverter synthesizing the output voltage with step pulse has been widely used as a solution for high power and high voltage applications. This paper proposes a simple method to obtain the conducting . angle. It is calculated by using voltage-second areas of the divided reference voltage according to the output voltage levels and these areas have influence on output step pulse waves. It is possible to reduce an amount of calculation because it is not required to solve the simultaneous equations by an iterative method. Also, the proposed method can get the conducting angle by means of on line.

  • PDF

Calculation of Equivalent d-q Model Parameters of A Squirrel Cage Induction Motor Using Finite Element Method (유한요소법에 의한 농형유도전동기 d-q 등가모델의 회로정수 산출)

  • Choi, Chong-Sun;Koo, Tae-Man
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.315-317
    • /
    • 1999
  • This paper presents a method for determining of the equivalent d-q model parameters of three-phase squirrel cage induction motors. The method is based on the use of a finite-element field calculation which enables the precise slot geometry to be modelled accurately, and includes the effects of magnetic saturation of iron core. The proposed method can reduce computational costs compared with the method that needs the iterative field analysis to obtain the impedance. It is verified that the circuit inductances are shown as functions of the current.

  • PDF

Automation of Heat & Mass Balance Design Optimization Method for Power Plant (화력발전시스템 Heat and Mass Balance 최적설계 자동화기법)

  • Baek, SeHyun;Jang, jihoon;Kim, YoungJoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.181-188
    • /
    • 2019
  • In this study, the Heat & Mass balance design optimization tool has developed by linking the design input/output variables with the Heat & Mass balance calculation solver and optimization algorithm and also automating the iterative calculation process. As a result of testing this optimization tool for 10 kinds of power plant, it was expected to improve the NPV and IRR compared with general design methods.

Structural safety redundancy-based design method for structure with viscous dampers

  • Hao, Linfei;Zhang, Ruifu
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.821-840
    • /
    • 2016
  • A simple design process is proposed for supplemental viscous dampers based on structural safety redundancy. In this process, the safety redundancy of the primary structure without a damper is assessed by the capacity and response spectra. The required damping ratio that should be provided by the supplemental dampers is estimated by taking the structural safety redundancy as a design target. The arrangement of dampers is determined according to the drift distribution obtained by performing pushover analysis. A benchmark model is used to illustrate and verify the validity of this design process. The results show that the structural safety redundancy of the structure provided by the viscous dampers increases to approximately twice that of the structure without a damper and is close to the design target. Compared with the existing design methods, the proposed process can estimate the elastic-plastic response of a structure more easily by using static calculation, and determine the required damping ratio more directly without iterative calculation or graphical process. It can be concluded that the proposed process is simple and effective.

Development of limit equilibrium method as optimization in slope stability analysis

  • Mendjel, D.;Messast, S.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.339-348
    • /
    • 2012
  • The slope stability analysis is usually done using the methods of calculation to rupture. The problem lies in determining the critical failure surface and the corresponding factor of safety (FOS). To evaluate the slope stability by a method of limit equilibrium, there are linear and nonlinear methods. The linear methods are direct methods of calculation of FOS but nonlinear methods require an iterative process. The nonlinear simplified Bishop method's is popular because it can quickly calculate FOS for different slopes. This paper concerns the use of inverse analysis by genetic algorithm (GA) to find out the factor of safety for the slopes using the Bishop simplified method. The analysis is formulated to solve the nonlinear equilibrium equation and find the critical failure surface and the corresponding safety factor. The results obtained by this approach compared with those available in literature illustrate the effectiveness of this inverse method.