• Title/Summary/Keyword: Iterative Calculation

Search Result 213, Processing Time 0.024 seconds

Optimal Bit Split Methods and Performance Analysis for Applying to Multilevel Modulation of Iterative Codes (반복 부호의 다치 변조방식 적용을 위한 최적의 비트 분리 방법 및 성능평가)

  • Bae, Jong-Tae;Jung, Ji-Won;Choi, Seok-Soon;Kim, Min-Hyuk;Chang, Dae-Ig
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.216-225
    • /
    • 2007
  • This paper presents bit splitting methods to apply multilevel modulation to iterative codes such as turbo code, low density parity check code and turbo product code. Log-likelihood ratio method splits multilevel symbols to bits using the received in-phase and quadrature component based on Gaussian approximation. However it is too complicate to calculate and implement hardware due to exponential and log calculation. therefore this paper presents Euclidean, MAX and Sector method to reduce the high complexity of LLR method. We propose optimal bit splitting method for three iterative codes.

Bree's interaction diagram of beams with considering creep and ductile damage

  • Nayebi, A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.665-678
    • /
    • 2008
  • The beams components subjected to the loading such as axial, bending and cyclic thermal loads were studied in this research. The used constitutive equations are those of elasto-plasticity coupled to ductile and/or creep damage. The nonlinear kinematic hardening behavior was considered in elastoplasticity modeling. The unified damage law proposed for ductile failure and fatigue by the author of Sermage et al. (2000) and Kachanov's creep damage model applied to cyclic creep and low cycle fatigue of beams. Based on the results of the analysis, the shakedown limit loads were determined through the calculation of the residual strains developed in the beam analysis. The iterative technique determines the shakedown limit load in an iterative manner by performing a series of full coupled elastic-plastic and continuum damage cyclic loading modeling. The maximum load carrying capacity of the beam can withstand, were determined and imposed on the Bree's interaction diagram. Comparison between the shakedown diagrams generated by or without creep and/or ductile damage for the loading patterns was presented.

Safety Index Analysis with Second-Moment Method (2차(次) 모먼트법(法)에 의(依)한 안전성지표(安全性指標) 해석(解析))

  • Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.6
    • /
    • pp.39-48
    • /
    • 1986
  • This paper examines the effects on safety index analysis with Level II Second-Moment Method. The general two variable problem is examined by means of Cornell safety index ${\beta}c$ Rosenblueth-Esteva safety index ${\beta}_{RE}$ Rackwitz-Fiessler safety index by iterative method and Practical FOSM safety index ${\beta}_p$, which based partly on the concepts given by Paloheimo and Hannus, proposed the algorithm in this paper. The calculated examples have shown that safety index by Practical FOSM Method proposed in this paper would be similar to those in the method by Rosenblueth-Esteva or Rackwitz-Fissler and be simpler in calculation than the Rackwitz's Advanced FOSM Method, in which the iterative procedure has to be used.

  • PDF

Closed Form Inverse Kinematic Solutions for General Combination of Three-Joint Manipulator (3관절 매니퓰레이터의 일반적 조합에 대한 역기구학적 폐형해)

  • 한규범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.363-368
    • /
    • 1995
  • A general method of solving inverse kinematics of three-joint manipulator composed of revolute joints or prismatic joints or combinations of those joints is presented in this study. In completing real-time control, it is very important to obtain the closed form solutions of inverse kinematics rather than iterative numerical solutions, because iterative numerical solutions are generally much slower than the corresponding closed form solutions. If it is possible to obtain the inverse kinematic solutions for general cases of considering twist anlges and offsets, the manipulator work space can be designed and enlarged more effciently for specific task. Moreover, in idustrial manipulators, the effect of main three joints is larger than that of the other three joints related to orientation in the view of work space. Therfore the solutions of manin three-joint are considered. Even The inverse kinematic equations are complicatedly coupled, the systematical solving process by using symbolic calculation is presented.

  • PDF

Study on the efficient dynamic system condensation (동적 해석의 효율적 축소 기법에 관한 연구)

  • Baek, Sung-Min;Cho, Meang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.631-636
    • /
    • 2007
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the, we proposed a two-level condensation scheme(TLCS) for the construction of a reduced system. In first step, the of candidate elements by energy estimation, Rayleigh quotient, through Ritz vector calculation, and next, the primary degrees of freedom is selected by sequential elimination from the degrees of freedom connected the candidate elements in the first step. In the present study, we propose TLCS combined with iterative improved reduced system(IIRS) to increase accuracy of higher modes intermediate range. Also, it possible to control the accuracy of the eigenvalues and eigenmodes of the reduced system. Numerical examples demonstrate performance of proposed method.

  • PDF

A New Diagnosis of Actual Fault Location in Distribution Power Systems by Comparing the Current Waveform and the Amount of Interrupted Load (보호기기 동작시 전류파형과 탈락부하량을 고려한 방사상 배전계통 고장점 추정방법)

  • 최면송;이승재;이덕수;진보건;현승호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.2
    • /
    • pp.99-106
    • /
    • 2003
  • In this paper, an intelligent fault location and diagnosis system is proposed. The proposed system identifies the fault location in two-step procedure. The first step identifies candidates of fault location using an fault distance calculation using an iterative method. The second step is diagnosis the actual fault location in the candidates by comparing the current waveform patterns with the expected operation of the protective devices and considering the interrupted load after the operation protective device. The simulations results in the case study demonstrates a good performance of the proposed fault location and diagnosis system.

Fast iterative algorithm for calculating the critical current of second generation high temperature superconducting racetrack coils

  • Huang, Xiangyu;Huang, Zhen;Xu, Xiaoyong;Li, Wan;Jin, Zhijian
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.53-58
    • /
    • 2019
  • The critical current is one of the key parameters of high temperature superconducting (HTS) racetrack coils. Therefore, it is significant to calculate critical currents of HTS coils. This paper introduces a fast iterative algorithm for calculating the critical current of second generation (2G) HTS coils. This model does not need to solve long charging transients which greatly reduced the amount of calculation. To validate this model, the V-I curve of four 2G HTS double racetrack coils are measured. The effect of the silicon steel sheet on the critical current of the racetrack coil is also studied based on this algorithm.

Improving ${\lambda}-{\gamma}$ Iteration Method for Hydrothermal Coordination Problem (수화력 협조 문제에서의 ${\lambda}-{\gamma}$ 반복법의 개선)

  • Park, Si-Woo;Choo, Jin-Boo;Lee, Kyoung-Jae;Kim, Sung-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.179-181
    • /
    • 1996
  • In conventional hydrothermal coordination problem, the lambda-gamma iteration method is generally used for generation schedule. The procedure of classical lambda-gamma iteration method consists of 3 main loops and it is very complex. Therefore, it needs many iterative calculations. This paper proposes an advanced hydrothermal algorithm based on newly developed lambda-gamma iteration method. As lambda calculation loop is removed in the newly developed iteration method, iterative calculations are reduced and whole procedure is simplified. The proposed algorithm is verified on simple system.

  • PDF

Predicting aerodynamic characteristics of two-dimensional automobile shapes in ground proximity using an iterative viscous-potential flow technique (점성-비점성 유동 반복계산 방법을 이용한 2차원 자동차모형의 공력 특성 예측)

  • 최도형;최철진
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.52-61
    • /
    • 1986
  • An iterative viscous-potential flow procedure has been developed and used to predict aerodynamic characteristics of automobiles in ground proximity. The method is capable of predicting the effects of separated flows. The viscous-potential flow iteration procedure provides the connection between potential flow, boundary layer and wake modules. The separated wake is modeled in the potential flow analysis by thin sheets across which exists a jump in velocity potential. The ground effect is properly accounted for by placing a body image in the potential flow calculation. The agreement between theory and experiment is good and, thus, demonstrates that the method can be used in the preliminary design stage.

  • PDF

Iterative Polynomial Fitting Technique Using Polynomial Coefficients for the Nonlinear Line Array Shape Estimation (비선형 선배열 형상 추정을 위한 계수 반복 다항 근사화 기법)

  • Cho, Chom Gun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.20-25
    • /
    • 2006
  • Low frequency towed line array with high array gain and beam resolution is a long range surveillance sensor for anti-submarine warfare. The beam characteristics is however deteriorated due to the distorted line array sensor caused by low towing speed, wind, current, and towing ship maneuvering. An adaptive beamforming method is utilized in this paper to enhance the distorted line array beam performance by estimating and compensating the nonlinear array shape. A polynomial curve fitting in the least square sense is used to estimate the array shape iteratively with the distributed heading sensors data along the array. Real time array shape estimation and nonlinear array beam calculation is applied to a very long towed line array sensor system and the beam performance is evaluated and compared to the linear beamformer for the simulation and sea trial data.