• 제목/요약/키워드: Iteration number

검색결과 356건 처리시간 0.027초

NUMBER OF VERTICES FOR POLYGONAL FUNCTIONS UNDER ITERATION

  • Li, Lin
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제14권2호
    • /
    • pp.99-109
    • /
    • 2007
  • Being complicated in computation, iteration of a nonlinear 1-dimensional mapping makes many interesting problems, one of which is about the change of the number of vertices under iteration. In this paper we investigate iteration of polygonal functions which each have only one vertex and give conditions under which the number of vertices either does not increase or has a bound under iteration.

  • PDF

CRC부호를 이용한 반복복호부호의 반복복호 제어기법 (Variable Iteration Decoding Control Method of Iteration Codes using CRC-code)

  • 백승재;박진수
    • 정보처리학회논문지C
    • /
    • 제11C권3호
    • /
    • pp.353-360
    • /
    • 2004
  • 본 논문에서는 반복복호부호의 복호과정시 CRC(Cyclic Redundancy Check)검사를 이용하여 반복복호수가 가변하는 효율적인 제어기법을 제안한다. 반복복호 부호는 반복구조를 가지며 그 특성상 반복복호수가 증가할수록 BER/FER성능이 우수하게 향상된다. 그러나 반복복호수가 증가할수록 복호과정시 적용된 알고리즘의 복잡도에 따라 다소 차이는 있지만 공통적으로 계산량의 증가를 가지게 되며 이는 복호지연시간 증가로 나타난다. 또한 일정 반복복호수 이상에 도달하게 되면 그 성능 변화가 거의 없는 오류마루(error floor)현상이 나타난다. 즉 성능변화가 없는 적절한 반복복호수 종료점을 찾아야 한다. 따라서 본 논문에서는 프래임 주기로 수신된 정보를 프래임 오류검사 지시자(FCS : Frame Check Sequence Indicator)를 이용하여 채널의 변화를 감시하며 반복복호 부호의 반복복호 횟수를 채널 적응적으로 증가, 감소할 수 있도록 제어하는 기법을 제안하여 결과적으로 반복구조를 가지는 부호의 방대한 계산량 감소와 이로 인한 복호지연 시간을 성능저하 없이 효율적으로 단축시킬 수 있음을 확인하였다.

Iteration 부호의 가변반복복호 제어기법 (Variable Iteration Decoding Control Method for Iteration Codes)

  • 백승재;이성우;박진수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.753-757
    • /
    • 2003
  • 본 논문에서는 반복복호 부호의 복호과정시 채널 적응적으로 반복복호수를 가변할 수 있는 효율적인 제어기법을 제안한다. 반복복호 부호는 반복구조를 가지며 그 특성상 반복복호수가 증가할수록 성능이 우수하게 향상된다. 그러나 반복복호수가 증가한 수록 복호과정시 적용된 알고리즘의 복잡도에 따라 다소 차이는 있지만 공통적으로 계산량의 증가를 가지게 되며 이는 복호지연시간 증가로 나타난다. 또한 일정 반복복호수 이상에 도달하게 되면 그 성능 변화가 거의 없는 오류마구(floor) 현상이 나타난다. 즉 성능변화가 없는 적절한 반복복호수 종료점을 찾아야 한다. 따라서 본 논문에서는 프레임 주기로 수신된 정보를 프레임 에러체크 지시자를 이용하여 채널의 변화를 감시하며 반복복호 부호의 반복복호수를 채널 적응적으로 승가, 감소할 수 있도록 제어하는 기법을 제안하였으며 결과적으로 반복구조를 가지는 부호의 방대한 계산량 감소와 이로 인한 복호지연 시간을 성능저하없이 효율적으로 단축시킬 수 있음을 보였다.

  • PDF

효율적인 저전력 터보 복호기 (Efficient Low-Power Turbo Decoder)

  • 배성일;김재석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.73-76
    • /
    • 1999
  • In this paper, we propose a new design of turbo decoder. It contains the simple additional unit which automatically decides the number of the iteration by detecting of the reliability value as threshold value. We investigate the relationship between the reliability value and the number of the iteration. We find the optimal threshold value without noticeable loss in performance. As a results of the simulation, it reduces the average number of the iteration compared with the conventional turbo decoder.

  • PDF

고유모드 계산을 위한 초기 반복벡터의 효율성 연구 (Investigation of Efficiency of Starting Iteration Vectors for Calculating Natural Modes)

  • 김병완;경조현;홍사영;조석규;이인원
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.112-117
    • /
    • 2005
  • Two modified versions of subspace iteration method using accelerated starting vectors are proposed to efficiently calculate free vibration modes of structures. Proposed methods employ accelerated Lanczos vectors as starting iteration vectors in order to accelerate the convergence of the subspace iteration method. Proposed methods are divided into two forms according to the number of starting vectors. The first method composes 2p starting vectors when the number of required modes is p and the second method uses 1.5p starting vectors. To investigate the efficiency of proposed methods, two numerical examples are presented.

Stabilization effect of fission source in coupled Monte Carlo simulations

  • Olsen, Borge;Dufek, Jan
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.1095-1099
    • /
    • 2017
  • A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.

SIF AND FINITE ELEMENT SOLUTIONS FOR CORNER SINGULARITIES

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • 제34권5호
    • /
    • pp.623-632
    • /
    • 2018
  • In [7, 8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous boundary conditions, compute the finite element solutions using standard FEM and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. Their algorithm involves an iteration and the iteration number depends on the acuracy of stress intensity factors, which is usually obtained by extraction formula which use the finite element solutions computed by standard Finite Element Method. In this paper we investigate the dependence of the iteration number on the convergence of stress intensity factors and give a way to reduce the iteration number, together with some numerical experiments.

구조물의 고유모드 해석을 위한 가속화된 초기벡터 구성기법 (Accelerated Starting Vectors for Analysis of Natural Modes of Structures)

  • 김병완;정형조;이인원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.784-787
    • /
    • 2004
  • Modified version of subspace iteration method using accelerated starting vectors is proposed to efficiently calculate free vibration modes of structures. Proposed method employs accelerated Lanczos starting vectors that can reduce the number of iterations in the subspace iteration method. Proposed method is more efficient than the conventional method when the number of required modes is relatively small. To verify the efficiency of proposed method, two numerical examples are presented.

  • PDF

구조물의 고유진동수 및 모드형상의 계산을 위한 가속화된 부분공간반복법 (Accelerated Subspace Iteration Method for Computing Natural Frequencies and Mode Shapes of Structures)

  • Kim, Byoung-Wan;Kim, Chun-Ho;Lee, In-Won
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.503-508
    • /
    • 2003
  • This paper proposes modified subspace iteration method for efficient frequency analysis of structures. Proposed method uses accelerated Lanczos vectors as starting vectors in order to reduce the number of iterations in the subspace iteration method. Proposed method has better computing efficiency than the conventional method when the number of desired frequencies is relatively small. The efficiency of proposed method is verified through numerical examples.

  • PDF

Existence of Solutions for the Semilinear Fuzzy Integrodifferential Equations using by Successive Iteration

  • Kwun, Young-Chel;Kim, Mi-Ju;Lee, Bu-Young;Park, Jin-Han
    • 한국지능시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.543-548
    • /
    • 2008
  • This paper is to investigate the existence theorem for the semilinear fuzzy integrodifferential equation in $E_N$ by using the concept of fuzzy number whose values are normal, convex, upper semicontinuous and compactly supported interval in $E_N$. Main tool is successive iteration method.