• Title/Summary/Keyword: Iteration Method

Search Result 1,145, Processing Time 0.027 seconds

Accurate analytical solutions for nonlinear oscillators with discontinuous

  • Bayat, Mahdi;Bayat, Mahmoud;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.349-360
    • /
    • 2014
  • In this study, three approximate analytical methods have been proposed to prepare an accurate analytical solution for nonlinear oscillators with fractional potential. The basic idea of the approaches and their applications to nonlinear discontinuous equations have been completely presented and discussed. Some patterns are also presented to show the accuracy of the methods. Comparisons between Energy Balance Method (EBM), Variational Iteration Method (VIM) and Hamiltonian Approach (HA) shows that the proposed approaches are very close together and could be easily extend to conservative nonlinear vibrations.

Accurate periodic solution for nonlinear vibration of thick circular sector slab

  • Pakar, Iman;Bayat, Mahmoud;Bayat, Mahdi
    • Steel and Composite Structures
    • /
    • v.16 no.5
    • /
    • pp.521-531
    • /
    • 2014
  • In this paper we consider a periodic solution for nonlinear free vibration of conservative systems for thick circular sector slabs. In Energy Balance Method (EBM) contrary to the conventional methods, only one iteration leads to high accuracy of the solutions. The excellent agreement of the approximate frequencies and periodic solutions with the exact ones could be established. Some patterns are given to illustrate the effectiveness and convenience of the methodology. Comparing with numerical solutions shows that the energy balance method can converge to the numerical solutions very rapidly which are valid for a wide range of vibration amplitudes as indicated in this paper.

AN ELIGIBLE PRIMAL-DUAL INTERIOR-POINT METHOD FOR LINEAR OPTIMIZATION

  • Cho, Gyeong-Mi;Lee, Yong-Hoon
    • East Asian mathematical journal
    • /
    • v.29 no.3
    • /
    • pp.279-292
    • /
    • 2013
  • It is well known that each kernel function defines a primal-dual interior-point method(IPM). Most of polynomial-time interior-point algorithms for linear optimization(LO) are based on the logarithmic kernel function([2, 11]). In this paper we define a new eligible kernel function and propose a new search direction and proximity function based on this function for LO problems. We show that the new algorithm has ${\mathcal{O}}((log\;p){\sqrt{n}}\;log\;n\;log\;{\frac{n}{\epsilon}})$ and ${\mathcal{O}}((q\;log\;p)^{\frac{3}{2}}{\sqrt{n}}\;log\;{\frac{n}{\epsilon}})$ iteration bound for large- and small-update methods, respectively. These are currently the best known complexity results.

Distribution of a Sum of Weighted Noncentral Chi-Square Variables

  • Heo, Sun-Yeong;Chang, Duk-Joon
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.429-440
    • /
    • 2006
  • In statistical computing, it is often for researchers to need the distribution of a weighted sum of noncentral chi-square variables. In this case, it is very limited to know its exact distribution. There are many works to contribute to this topic, e.g. Imhof (1961) and Solomon-Stephens (1977). Imhof's method gives good approximation to the true distribution, but it is not easy to apply even though we consider the development of computer technology Solomon-Stephens's three moment chi-square approximation is relatively easy and accurate to apply. However, they skipped many details, and their simulation is limited to a weighed sum of central chi-square random variables. This paper gives details on Solomon-Stephens's method. We also extend their simulation to the weighted sum of non-central chi-square distribution. We evaluated approximated powers for homogeneous test and compared them with the true powers. Solomon-Stephens's method shows very good approximation for the case.

FAST MATRIX SPLITTING ITERATION METHOD FOR THE LINEAR SYSTEM FROM SPATIAL FRACTIONAL DIFFUSION EQUATIONS

  • LIANG, YUPENG;SHAO, XINHUI
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.489-506
    • /
    • 2020
  • The spatial fractional diffusion equation can be discretized by employing the implicit finite difference scheme using the shifted Grünwald formula. The discretized linear system is obtained, whose the coefficient matrix has a diagonal-plus-Toeplitz structure. In order to solve the diagonal-plus-Toeplitz linear system, on the basis of circulant and skew-circulant splitting (CSCS splitting), we construct a new and efficient iterative method, called DSCS iterative methods, which have two parameters. Than we prove the convergence of DSCS methods. As a focus, we derive the simple and effective values of two optimal parameters under some restrictions. Some numerical experiments are carried out to illustrate the validity and accuracy of the new methods.

Lip Recognition using Lip Shape Model and Down Hill Search Method (입술의 형태 모델과 Down Hill 탐색 방법을 이용한 입술 인식)

  • 이임건;장경식
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.6
    • /
    • pp.968-976
    • /
    • 2003
  • In this paper, we propose a novel method for lip recognition. Lip model is built based on the concatenated gray level distribution model, and the recognition problem is simplified as the minimization problem of matching object function. The Down Hill Simplex Algorithm is used for the minimization with the proposed novel method for setting initial condition, which can refrain Iteration from converging to local minima. The proposed algorithm shows extracting lip shape from the test image where Active Shape Model fails.

  • PDF

Identification of Damages within a Plate Structure (평판 구조물의 손상규명)

  • Kim, Nam-In;Lee, U-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.671-675
    • /
    • 2000
  • In this study, an FRF-based structural damage identification method (SDIM) is proposed for plate structures. The present SDIM is derived from the partial differential equation of motion of the damaged plate, in which damage is characterized by damage distribution function. Various factors that might affect the accuracy of the damage identification are investigated. They include the number of modal data used in the analysis and the damage-induced modal coupling. In the present SDIM, an efficient iterative damage self-search method is introduced. The iterative damage search method efficiently reduces the size of problem by searching out and then by removing all damage-free zones at each iteration of damage identification analysis. The feasibility of the present SDIM is studied by some numerically simulated tests.

  • PDF

Multiscale Adaptive Wavelet-Galerkin Method for Membrane Eigenvalue Analysis (박막 고유치 해석을 위한 멀티스케일 적응 웨이블렛-갤러킨 기법)

  • Yi, Yong-Sub;Kim, Yoon-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1291-1296
    • /
    • 2003
  • The objective of the present research is to develop a wavelet-based multiscale adaptive Galerkin method for membrane eigenvalue analysis. Since approximate eigensolutions at a certain resolution level can be good guesses, which play an important role in typical iterative solvers, at the next resolution level, the multiresolution iterative solution approach by wavelets can improve the solutionconvergence rate substantially. The intrinsic difference checking nature of wavelets can be also utilized effectively to develop an adaptive strategy. The present wavelet-based approach will be implemented for the simplest vector iteration method, but some important aspects, such as convergence speedup, and the reduction in the number of nodes can be clearly demonstrated.

  • PDF

Noise reduction for mesh smoothing of 3D mesh data

  • Hyeon, Dae-Hwan;WhangBo, Taeg-Keun
    • International Journal of Contents
    • /
    • v.5 no.4
    • /
    • pp.1-6
    • /
    • 2009
  • In this paper, we propose a mesh smoothing method for mesh models with noise. The proposed method enables not only the removal of noise from the vertexes but the preservation and smoothing of shape recognized as edges and comers. The magnitude ratio of 2D area and 3D volume in mesh data is adopted for the smoothing of noise. Comparing with previous smoothing methods, this method does not need many iteration of the smoothing process and could preserve the shape of original model. Experimental results demonstrate improved performance of the proposed approach in 3D mesh smoothing.

Blind Signal Processing for Wireless Sensor Networks

  • Kim, Namyong;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.158-164
    • /
    • 2014
  • In indoor sensor networks equalization algorithms based on the minimization of Euclidean distance (MED) for the distributions of constant modulus error (CME) have yielded superior performance in compensating for signal distortions induced from optical fiber links, wireless-links and for impulsive noise problems. One main drawback of MED-CME algorithms is a heavy computational burden hindering its implementation. In this paper, a recursive gradient estimation for weight updates of the MED-CME algorithm is proposed for reducing the operations $O(N^2)$ of the conventional MED-CME to O(N) at each iteration time for N data-block size. From the simulation results of the proposed recursive method producing exactly the same results as the conventional method, the proposed estimation method can be considered to be a reliable candidate for implementation of efficient receivers in indoor sensor networks.