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FAST MATRIX SPLITTING ITERATION METHOD FOR THE

LINEAR SYSTEM FROM SPATIAL FRACTIONAL DIFFUSION

EQUATIONS

YUPENG LIANG, XINHUI SHAO∗

Abstract. The spatial fractional diffusion equation can be discretized by

employing the implicit finite difference scheme using the shifted Grünwald
formula. The discretized linear system is obtained, whose the coefficient

matrix has a diagonal-plus-Toeplitz structure. In order to solve the diagonal-

plus-Toeplitz linear system, on the basis of circulant and skew-circulant
splitting (CSCS splitting), we construct a new and efficient iterative method,

called DSCS iterative methods, which have two parameters. Than we prove

the convergence of DSCS methods. As a focus, we derive the simple and
effective values of two optimal parameters under some restrictions. Some

numerical experiments are carried out to illustrate the validity and accu-

racy of the new methods.
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1. Introduction

We consider the numerical solution of the spatial fractional diffusion equation
and the equation form is:

d(x, t)∂u(x,t)
∂t − ∂βu(x,t)

∂+xβ
− ∂βu(x,t)

∂−xβ
= f(x, t),

u(xL, t) = u(xR, t) = 0,
u(x, 0) = u0(x),

(1)
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where the function d(x, t) is nonnegative , ∂βu(x,t)
∂+xβ

and ∂βu(x,t)
∂−xβ

are the left and

right Riemann-Liouville fractional derivatives [1,2] of order β ∈ (1, 2) defined by

∂βu(x, t)

∂+xβ
=

1

Γ(2− β)

d2

dx2

∫ x

xL

(x− ξ)1−β
u(ξ, t)dξ,

∂βu(x, t)

∂−xβ
=

1

Γ(2− β)

d2

dx2

∫ xR

x

(ξ − x)
1−β

u(ξ, t)dξ,

where Γ(·) is the Gamma function,(x, t) ∈ (xL, xR)× (0,+∞).
Recently, compared with the classical second-order diffusion equations, frac-

tional diffusion models provide a more adequate and accurate description of
memory and hereditary characteristics of anomalous transport process [3–5].Hence,
fractional differential equations have received mainstream concern in many fields
involving physics [6,7], chemistry [8,9], finance [10,11] and so on.There are many
analytical methods have been developed to seek closed-form analytical solutions
of fractional differential equations, such as the Fourier transform methods, the
Laplace transform methods, and the Mellin transform method [12]. However, we
usually cannot find an analytical solution for FDE closed-form solution. There-
fore numerical methods have become significant ways to calculate approximate
solutions efficiently and reliably.

The FDEs have the following features:
(i) Fractional differential operators are nonlocal, causing subtle stability prob-

lems on the corresponding numerical approximations
(ii)The coefficient matrices of numerical methods for FDEs are full, which is

different from numerical matrices of second-order diffusion equations.
How to solve the discretized fractional diffusion equations has been analyzed

and constructed by various direct methods or iterative methods in previous
studies [13–18].

By a suitable finite difference discretization, the spatial FDE in Equation (1)
leads to a linear system at every temporal step. The coefficient matrix of lin-
ear system is D + T ∈ Rn×n, where D is a diagonal matrix with nonnegative
elements and T is a symmetric positive definite Toeplitz matrix. This class of
linear system cannot be simply solved by Toeplitz structure on account of the
addition of the diagonal matrix, although the pure Toeplitz linear system can be
solved inO(n2) or evenO(n log2 n) orO(n log n),see the previous studies [19].The
Krylov subspace iteration method(the conjugate gradient (CG) [20] and precon-
ditioned conjugate gradient (PCG) [20] and so on) is a kind of common and
valid solution methods for solving these linear systems [21,22]. We can econom-
ically compute the product of the diagonal-plus-Toeplitz matrix A = D + T ,
with a vector v ∈ Rn in O(n log n) operations by the use of the fast Fourier
transform(FFT) [23]. However, these methods confront with deterioration of
convergence rate and other problems [24].For better solving, Bai and Lu pro-
posed an iterative method called DTS and the preconditioner of DTS to solve
this linear system [24].Ran and Wang proposed an ADI-like method in view of



Fast matrix splitting iteration method for the linear system 491

the classical ADI iteration, by which we need to solve two linear systems with
Hessenberg coefficient matrices through Hessenberg LU factorization [25].Dai
and Wu constructed a type of the quasi-Toeplitz splitting iteration method and
developed a preconditioner by appropriating circular matrix [26]. Zhang and
Zeng constructed an incomplete circulant and skew-circulant splitting iteration
method, which introduces a new matrix to simplify Toeplitz-like structure [27].
Wang and Huang proposed a preconditioning method by doing equivalent trans-
formation for the original discretized system and left multiplying a permutation
matrix, then solved the equivalent system of linear equations using BiCGT and
BiCRT [28].

Toeplitz matrices T can be splitted into a circulant matrix C and a skew-
circulant matrix S [29] that is T = C + S (expressed by CSCS splitting).On
this basis, CSCS iteration method for solving Toeplitz system is given by Ng
in 2003 [30]. N. Akhondi and F. Toutounian proposed an accelerated CSCS
iterative method for Hermitian positive definite Toeplitz linear system, which has
two parameters [31].In addition, a shifted CSCS iteration method was proposed
according to the variant of such CSCS splitting by Liu and Qin [32]. In this
paper, we propose a new iterative solver for the linear system of which the
coefficient matrix has D+T ∈ Rn×n structure, based on classical CSCS splitting.

The organization of this paper is listed below. In Section 2, the discretized
linear system from spatial FDE (1) is obtained by finite difference discretization.
In Section 3, we present the DSCS iteration method and establish its convergence
theory. In Section 4, we derive the optimal value of the two parameters having
a great impact on convergence. In Section 5, the numerical experiments are
presented to prove the effectiveness of our methods. At last, we give some
conclusions and remarks at the end of the paper.

2. Finite difference discretization of FDE

Let (·)∗ indicate the transpose of either a matrix or vector, λ(·) represent
eigenvalues of the matrix, and sp(·) indicate the spectral set of the corresponding
matrix. For the spatial FDE (1),we suppose that xL = 0 and xR = 1. Besides,
we define a spatial partition xi = ih(i = 0, 1, ..., n + 1) in the interval [xL, xR],
a temporal partition t` = `∆t(` = 0, 1, ...,m), and denote by u`i ≈ u(xi, t`),
d`i = d(xi, t`) and f `i = f(xi, t`), h = 1

n+1 .

We employ the shifted Grünwald-Letnikov [33] approximation type to discrete
the fractional spatial derivative.

∂βu(x, t)

∂+xβ
= lim
h→0

1

hβ

bx/hc∑
k=0

g
(β)
k u(x− (k − 1)h, t)

∂βu(x, t)

∂−xβ
= lim
h→0

1

hβ

b(1−x)/hc∑
k=0

g
(β)
k u(x+ (k − 1)h, t)
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where bxc denotes the floor of x. So we obtain the implicit finite-difference
scheme of FDE (1). d`+1

i
u`+1
i −u`i

∆t − 1
hβ

i+1∑
k=0

g
(β)
k u`+1

i−k+1 −
1
hβ

n−i+2∑
k=0

g
(β)
k u`+1

i−k+1 = f `+1
i ,

i = 1, 2, ..., n, ` = 0, 1, ...,m− 1,
(2)

where g
(β)
k is given as g

(β)
k = (−1)k

(
β
k

)
, where

(
β
k

)
is the fractional bino-

mial coefficients. It have the following properties:

g
(β)
k = (−1)

kα · (α− 1) · (α− 2) · · · ·(α− k + 1)

k!

g
(β)
0 = 1, g

(β)
1 = −β, 1 ≥ g(β)

2 ≥ g(β)
3 ≥ · · · ≥ 0,

∞∑
k=0

g
(β)
k = 0,

∑̀
k=0

g
(β)
0 < 0,∀` ≥ 1.

The finite difference form in (2) can be rewritten as following:

(D`+1 + T )u`+1 = ∆tf `+1 +D`+1u`, `= 0, 1,...,m− 1, (3)

where u` = [u`1, u
`
2, ..., u

`
n]∗ and f `[f `1 , f

`
2 , ..., f

`
n]∗ at the (` + 1) − th temporal

level , where D`+1 = diag(d`+1
1 , d`+1

2 , ..., d`+1
n ) is a diagonal matrix and T =

∆t
hβ

(Tβ + T ∗β ) is a Toeplitz matrix , with

Tβ = −



g
(β)
1 g

(β)
0 0 · · · 0 0

g
(β)
2 g

(β)
1 g

(β)
0

. . .
. . . 0

... g
(β)
2 g

(β)
1

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

g
(β)
n−1

. . .
. . .

. . . g
(β)
1 g

(β)
0

g
(β)
n g

(β)
n−1 · · · · · · g

(β)
2 g

(β)
1


Consequently, the FDE transforms into a discretized linear system (3), with

the coefficient matrix A`+1 := D`+1 + T being a diagonal-plus-Toeplitz matrix
at each temporal step.

Because of the decay property of g
(β)
k , Toeplitz matrix T is a strictly diagonally

dominant M-matrix [34]. Therefore T is a symmetric positive definite matrix.
Next, we know that the Toeplitz linear system can be solved by the CSCS

iterative method. The theoretical analysis proves that when both the circulant
matrix and the skew-circulant matrix are positive definite matrices, the CSCS
iterative method converges to the solution of the Toeplitz linear system [30].

The CSCS iterative method [30] is based on a splitting (C, S) of T , i.e.
T = C + S, where T is a Toeplitz matrix, C is a circulant matrix and S is a
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skew-circulant matrix.

T =



t0 t−1 · · · t2−n t1−n

t1 t0 t−1
. . . t2−n

... t1
. . .

. . .
...

tn−2
. . .

. . .
. . . t−1

tn−1 tn−2 · · · t1 t0


,

C =
1

2



t0 t−1 + tn−1 · · · t2−n + t2 t1−n + t1

t1 + t1−n t0 t−1 + tn−1
. . . t2−n + t2

... t1 + t1−n
. . .

. . .
...

tn−2 + t−2
. . .

. . .
. . . t−1 + tn−1

tn−1 + t−1 tn−2 + t−2 · · · t1 + t1−n t0


,

S =
1

2



t0 t−1 − tn−1 · · · t2−n − t2 t1−n − t1

t1 − t1−n t0 t−1 − tn−1
. . . t2−n − t2

... t1 − t1−n
. . .

. . .
...

tn−2 − t−2
. . .

. . .
. . . t−1 − tn−1

tn−1 − t−1 tn−2 − t−2 · · · t1 − t1−n t0


.

The CSCS iteration method [30] :
Given an initial guess x(0), The sequence {x(k)} for k = 0, 1, 2 · · · until con-

verges, compute {
(αI + C)x(k+ 1

2 ) = (αI − S)x(k) + b

(αI + S)x(k+1) = (αI − C)x(k+ 1
2 ) + b

where α is positive constant.
According to the CSCS iteration method, the matrix T generated by the

discretization of FDEs can be split into the circulant matrix C and the skew-
circulant matrix S. In this paper, the Toeplitz matrix T = ∆t

hβ
(Tβ + T ∗β ) is a

real symmetric positive definite matrix. In the light of the g
(β)
k property, we can

draw the conclusion that the circulant matrix C and the skew-circulant matrix
S are the real symmetric positive definite matrices.

3. The DSCS iteration method

Based on the above knowledge, we propose a double-split iterative method in
order to solve Hermitian positive definite linear systems:

Au = b, A ∈ Cn×n, b ∈ Cn (4)

where A = D + T , D ∈ Cn×n is a diagonal matrix which the diagonal elements
are non-negative, T ∈ Cn×n is Hermitian positive definite Toeplitz matrix.
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The coefficient matrix A from the linear system is split two times. Firstly,
we introduce a splitting parameter ω , then the diagonal matrix is split into ωD
and (1−ω)D. Secondly, the Toeplitz matrix performs the CSCS splitting. That
is, the split format is as follows:

A = D + T = ωD + (1− ω)D + C + S
= ωD + C + (1− ω)D + S
= Cω + S1−ω

(5)

where Cω = ωD + C, S1−ω = (1 − ω)D + S, C, S are respectively the circulant
matrix and the skew-circulant matrix from CSCS splitting.

We introduce a positive parameter α and apply the ADI format to process
the coefficient matrix. Thus we construct the following two-step split iterative
framework: {

(αI + Cω)u = (αI − S1−ω)u+ b
(αI + S1−ω)u = (αI − Cω)u+ b

(6)

Therefore we get the DSCS iteration method.

3.1. The DSCS Iteration Method. Given an initial guess u(0) ∈ Cn, calcu-
late the next iteration vector u(k+1) ∈ Cn by the following format{

(αI + Cω)u(k+ 1
2 ) = (αI − S1−ω)u(k) + b

(αI + S1−ω)u(k+1) = (αI − Cω)u(k+ 1
2 ) + b

until the vector sequence
{
u(k)

}
∈ Cn(k = 1, 2, 3...) converges, where α is a

positive constant.
By direct calculation, this two-step iterative equation can be transformed into

a standard equation:

M(α)u(k+1) = N(α)u(k) + b (7)

where M(α) = 1
2α (αI + Cω)(αI + S1−ω), N(α) = 1

2α (αI − Cω)(αI − S1−ω)
In fact, we give the new matrix splitting form for the coefficient matrix in

(3), that is, A = M(α)−N(α), called as DSCS splitting. The iteration matrix
of the DSCS iteration method is:

L(α) = M(α)−1N(α) = (αI + S1−ω)−1(αI + Cω)−1(αI − Cω)(αI − S1−ω) (8)

According to previous studies [33,34], We conclude that the necessary and suffi-
cient condition for the convergence of the DSCS iterative method is the spectral
radius ρ(L(α)) of its iteration matrix L(α) (Equation 8) is less than 1, that is,
ρ(L(α)) < 1.

The following theorem demonstrates that the DSCS iteration method is un-
conditional convergence.

3.2. DSCS convergence analysis.

Theorem 3.1. : Let

A = D + T = D + C + S = (ωD + C) + ((1− ω)D + S) = Cω + S1−ω ∈ Cn×n
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where ω ∈ [0, 1], D ∈ Cn×n is a diagonal matrix which the elements are nonneg-
ative and T ∈ Cn×n is a Hermitian positive definite Toeplitz matrix, C ∈ Cn×n
and S ∈ Cn×n are respectively the circulant matrix and the skew-circulant ma-
trix through CSCS splitting of Toeplitz matrix T . The iteration matrix of DSCS
method is:

L(α) = (αI + S1−ω)−1(αI + Cω)−1(αI − Cω)(αI − S1−ω)

Then the DSCS iteration method can unconditionally converge to the exact so-
lution of Ax = b.

If the spectral radius of the iteration matrix L(α) denotes ρ(L(α)), we obtain
ρ(L(α)) ≤ σ(α) < 1 for any positive constant α and initial guess u(0) ∈ Cn,
where

σ(α) = max
ξj∈λ(Cω)

{
|α− ξ|
α+ ξ

}
· max
ηj∈λ(S1−ω)

{
|α− η|
α+ η

}
Proof. By the similar transformation of the matrix, the iteration matrix L(α) of
the DSCS iterative method is transformed into the matrix

L̂(α) = (αI + Cω)−1(αI − Cω)(αI − S1−ω)(αI + S1−ω)−1

According to the relationship between the matrix 2-norm and the spectral
radius, it holds that

ρ(L(α)) = ρ(L̂(α))
≤
∥∥(αI + Cω)−1(αI − Cω)(αI − S1−ω)(αI + S1−ω)−1

∥∥
2

≤
∥∥(αI + Cω)−1(αI − Cω)

∥∥
2

∥∥(αI − S1−ω)(αI + S1−ω)−1
∥∥

2

= max
ξj∈λ(Cω)

{
|α−ξ|
α+ξ

}
· max
ηj∈λ(S1−ω)

{
|α−η|
α+η

}
= σ(α)

Because D is a positive semidefinite diagonal matrix, and the circulant matrix
C and the skew-circulant matrix S are Hermitian positive definite. Consequently,
the eigenvalues of Cω ∈ Cn×n and S1−ω ∈ Cn×n are positive, which readily
implies σ(α) < 1 for any positive constant α. �

The DSCS method divides the diagonal matrix D into ωD and (1 − ω)D,
splits the Toeplitz matrix into the circulant matrix C and the skew-circulant
matrix S, which introduces an unknown parameter ω to make adjustments. As
we all know, the parameters have an important impact on the iterative method.
Next we will discuss how the two parameters α, ω affect the spectral radius of
L(α) in the DSCS iteration method.

4. The optimal α and ω

As mentioned above, the DSCS iteration method has two parameters and how
to choose them has a huge impact on convergence rate.

Firstly, we discuss the optimal choice of the parameter α .
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Theorem 4.1. Let

A = D+T = ωD+(1−ω)D+C+S = (ωD+C)+((1−ω)D+S) = Cω +S1−ω

ω ∈ [0, 1], ξmin and ξmax are the smallest and the largest eigenvalues of Cω, ηmin

and ηmax are the smallest and the largest eigenvalues of S1−ω. Let

ξ∗
∆
=
√
ξmaxξmin, η∗

∆
=
√
ηminηmax

then the optimal parameter α∗ which minimizes the function σ(α) satisfies the
following conclusions:

(I) If ξ∗ = η∗ ,then

α∗ = ξ∗ = η∗

min
α
σ(α) = σ(α∗) =

√
ξmax −

√
ξmin√

ξmax +
√
ξmin

√
ηmax −

√
ηmin√

ηmax +
√
ηmin

(II) If ξ∗ < η∗ :

(1) For ξmin ≥ ηmin, or for ξmax < ηmax, ξmin < ηmin, ξmax+ηmax

ξmin+ηmin
≥
√

ξmaxηmax

ξminηmin
.

we conclude that α∗ = ξ∗ and

min
α
σ(α) = σ(ξ∗) =

ηmax − ξ∗
ηmax + ξ∗

√
ξmax −

√
ξmin√

ξmax +
√
ξmin

(2) For ξmax ≥ ηmax, or for ξmax < ηmax, ξmin < ηmin, ξmin+ηmin

ξmax+ηmax
>
√

ξminηmin

ξmaxηmax
.

we conclude that α∗ = η∗ and

min
α
σ(α) = σ(η∗) =

η∗ − ξmin

η∗ + ξmin

√
ηmax −

√
ηmin√

ηmax +
√
ηmin

(III) If ξ∗ > η∗ :

(1) For ξmax ≤ ηmax, or for ξmax > ηmax, ξmin > ηmin, ξmin+ηmin

ξmax+ηmax
≥
√

ξminηmin

ξmaxηmax
.

we conclude that α∗ = ξ∗ and

min
α
σ(α) = σ(ξ∗) =

ξ∗ − ηmin

ξ∗ + ηmin

√
ξmax −

√
ξmin√

ξmax +
√
ξmin

(2) For ξmin ≤ ηmin, or for ξmax > ηmax, ξmin > ηmin,
ξmax+ηmax

ξmin+ηmin
>
√

ξmaxηmax

ξminηmin
.

we conclude that α∗ = η∗ and

min
α
σ(α) = σ(η∗) =

ξmax − η∗
ξmax + η∗

√
ηmax −

√
ηmin√

ηmax +
√
ηmin

Proof. Because the unary function f(x) = α−x
α+x (x ∈ [0,∞)) s monotonically

decreasing, then

σCω (α) = max
ξj∈λ(Cω)

{
|α−ξ|
α+ξ

}
= max
ξmin≤ξ≤ξmax

{
|α−ξ|
α+ξ

}
= max

{
|α−ξmin|
α+ξmin

, |α−ξmax|
α+ξmax

}
,
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σS1−ω (α) = max
ηj∈λ(S1−ω)

{
|α−η|
α+η

}
= max
ηmin≤η≤ηmax

{
|α−η|
α+η

}
= max

{
|α−ηmin|
α+ηmin

, |α−ηmax|
α+ηmax

}
.

By straightforward computing, we have some conclusions that

minσCω (α) = σCω (ξ∗) =
√
ξmax−

√
ξmin√

ξmax+
√
ξmin

, ξ∗ =
√
ξmaxξmin,

minσS1−ω (α) = σS1−ω (η∗) =
√
ηmax−

√
ηmin√

ηmax+
√
ηmin

, η∗ =
√
ηmaxηmin.

Next we distinguish the values of ξ∗ and η∗ , so that we get the optimal
parameter α∗.

1. If ξ∗ = η∗, then

min
α
σ(α) = min

α

{
σCω (α) · σS1−ω (α)

}
= σ(ξ∗) = σ(η∗)

=
√
ξmax−

√
ξmin√

ξmax+
√
ξmin

√
ηmax−

√
ηmin√

ηmax+
√
ηmin

2. If ξ∗ < η∗, thenξmin = ηmax, Hence, we can obtain the function σ(α):

σ(α) =


ξmax−α
ξmax+α

ηmax−α
ηmax+α , α < ξ∗

α−ξmin

α+ξmin

ηmax−α
ηmax+α , ξ∗ < α < η∗

α−ξmin

α+ξmin

α−ηmin

α+ηmin
, α > η∗

The function σ(α) is continuous. By calculation, we know that σ(α) is
monotonically decreasing when α < ξ∗, and σ(α) is monotonically increasing
when α > η∗. We need to discuss the monotonicity of the function σ(α) when
ξ∗ < α < η∗.

i). If
√
ξminηmax ≤ ξ∗, i.e., ηmax ≤ ξmax, then σ(α) is monotonically decreasing

in [ξ∗, η∗], and min
α
σ(α) = σ(η∗)

ii). If
√
ξminηmax ≥ η∗, i.e., ξmin ≥ ηmin, then σ(α) is monotonically increasing

in [ξ∗, η∗], and min
α
σ(α) = σ(ξ∗)

iii). If ξ∗ <
√
ξminηmax < η∗, i.e., ξmax < ηmaxandξmin < ηmin, then

min
α
σ(α) = min{σ(ξ∗), σ(η∗)}

where

σ(ξ∗) = ηmax−ξ∗
ηmax+ξ∗

√
ξmax−

√
ξmin√

ξmax+
√
ξmin

,

σ(η∗) = η∗−ξmin

η∗+ξmin

√
ηmax−

√
ηmin√

ηmax+
√
ηmin

.

The inequality σ(ξ∗) < σ(η∗) holds if and only if

ξmax + ηmax

ξmin + ηmin
>

√
ξmaxηmax

ξminηmin
.

In summary, when ξ∗ < η∗, the arguments about the optimal and show that
the conclusions in theorem 4.1(II) are valid.

Similarly, when ξ∗ > η∗, we can get similar conclusions. �
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Lemma 4.2 ( [32]). Let A,B ∈ Cn×n be Hermitian matrices, the eigenvalues
of A,B,A + B are λi(A), λi(B), λi(A + B) (in ascending order). For each i =
1, 2..., n, we have

1.λi(A) + λ1(B) ≤ λi(A+B) ≤ λi(A) + λn(B)
2.λ1(A) + λi(B) ≤ λi(A+B) ≤ λn(A) + λi(B)

We employ two parameters α, ω in DSCS iteration method, and we get the
optimal parameter α that min

α
σ(α) in the discussion above. Therefore we try to

find an estimate of another optimal parameter ω to accelerate the convergence of
DSCS, which is hard to get actually. DSCS iteration method splits the coefficient
matrix into the form A = D+C+S = (ωD+C) + ((1−ω)D+S) = Cω +S1−ω
Due to the special structure of the matrix and the actual situation of equation
(1), we make three reasonable assumptions for the convenience of calculation.

1. The eigenvalues of circulant matrix C and skew-circulant matrix S belong
to Ω = [λmin, λmax]

2. The eigenvalues of diagonal matrix D which are diagonal elements di are
much larger than the eigenvalues of the circulant matrix C and the skew-circulant
matrix S, that is dmin ≥ λmax.

3. In the base of Lemma 4.2 and Hypothesis 2, we can assume the smallest
and largest eigenvalues of Cω are defined as:

ξmin = ωdmin+λmin(C) = ωdmin+λmin; ξmax = ωdmax+λmax(C) = ωdmax+λmax

Similarly, the smallest and largest eigenvalues of S1−ω are defined as:

ηmin = (1− ω)dmin + λmin; ηmax = (1− ω)dmax + λmax

Theorem 4.3. Under the above three assumptions, the upper bound function
σ(ω) of spectral radius of DSCS iterative method is

σ(ω) = max
ξj∈λ(Cω)

{
|α− ξ|
α+ ξ

}
· max
ηj∈λ(S1−ω)

{
|α− η|
α+ η

}
,

where ω ∈ (0, 1). ξj ∈ λ(Cω) and ηj ∈ λ(S1−ω) are related to parameter ω.
When

φ =
|ξ∗ − (1− ω)dmax − λmax|
ξ∗ + (1− ω)dmax + λmax

= 0 or ϕ =
|ξ∗ − (1− ω)dmin − λmin|
ξ∗ + (1− ω)dmin + λmin

= 0

the optimal parameter ω∗ which minimizes the function σ(ω) is as following:

ω∗ =

√
dmax√

dmax +
√
dmin

or ω∗ =

√
dmin√

dmax +
√
dmin

Proof.

σ(ω) = max
ξj∈λ(Cω)

{
|α−ξ|
α+ξ

}
· max
ηj∈λ(S1−ω)

{
|α−η|
α+η

}
= max

{(
|α−ξmax|
α+ξmax

, |α−ξmin|
α+ξmin

)
×
(
|α−ηmax|
α+ηmax

, |α−ηmin|
α+ηmin

)}
where ω ∈ (0, 1), ξj ∈ λ(Cω), ηj ∈ λ(S1−ω), ξmin, ξmax, ηmin and ηmax are
defined in assumption 3.
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Theorem 4.1 shows that there are only two choice of the parameter α. This
means that α∗ = ξ∗ =

√
ξmaxξmin or α∗ = η∗ =

√
ηmaxηmin. Therefore, we

analysis the parameter ω in two cases.
(I) If α∗ = ξ∗ =

√
ξminξmax, then

σ(ω) =
√
ξmax−

√
ξmin√

ξmax+
√
ξmin
·
{

max
(
|α−ηmax|
α+ηmax

, |α−ηmin|
α+ηmin

)}
=
√
ωdmax+λmax−

√
ωdmin+λmin√

ωdmax+λmax+
√
ωdmin+λmin

·
{

max
(
|ξ∗−(1−ω)dmax−λmax|
ξ∗+(1−ω)dmax+λmax

, |ξ∗−(1−ω)dmin−λmin|
ξ∗+(1−ω)dmin+λmin

)}
=
√
ωdmax+λmax−

√
ωdmin+λmin√

ωdmax+λmax+
√
ωdmin+λmin

· {max(φ, ϕ)}

where φ = |ξ∗−(1−ω)dmax−λmax|
ξ∗+(1−ω)dmax+λmax

, ϕ = |ξ∗−(1−ω)dmin−λmin|
ξ∗+(1−ω)dmin+λmin

Because ϕ is a monotonically increasing function on the parameter ω for
ω ∈ (0, 1), we know the function ϕ and φ are equal when ω = 0.5. The function
max(φ, ϕ) must take one choice from the function ϕ or φ when the parameter
ω 6= 0.5. We distinguish the function of ϕ and φ:

1. σ(ω) =
√
ωdmax+λmax−

√
ωdmin+λmin√

ωdmax+λmax+
√
ωdmin+λmin

|ξ∗−(1−ω)dmax−λmax|
ξ∗+(1−ω)dmax+λmax

No matter how the parameter ω is selected in the interval (0, 1), ξ∗ + (1 −
ω)dmax+λmax,

√
ωdmax+λmax−

√
ωdmin+λmin√

ωdmax+λmax+
√
ωdmin+λmin

and |ξ∗ − (1− ω)dmax − λmax| are pos-

itive. If the function σ(ω) can get the minimum, there can only be one situation
σ(ω) = 0 , that is:

ξ∗ − (1− ω)dmax − λmax = 0,

where ξ∗ =
√

(ωdmax + λmax)(ωdmin + λmin), ω ∈ (0, 1).
Because dmin � λmax, the optimal value of ω is as following:

ω∗ =

√
dmax√

dmax +
√
dmin

2. σ(ω) =
√
ωdmax+λmax−

√
ωdmin+λmin√

ωdmax+λmax+
√
ωdmin+λmin

|ξ∗−(1−ω)dmin−λmin|
ξ∗+(1−ω)dmin+λmin

Similarly, if the minimum of the function σ(ω) can be obtained, there only is
one situation such that σ(ω) = 0. So we have

ξ∗ − (1− ω)dmin − λmin = 0

where ξ∗ =
√

(ωdmax + λmax)(ωdmin + λmin), ω ∈ (0, 1).
Because dmin � λmax, the optimal value of ω is as following:

ω∗ =

√
dmin√

dmax +
√
dmin

Similarly, we can get the conclusions when α∗ = η∗ =
√
ηmaxηmin.

In summary, we obtain the optimal parameter ω∗ when ϕ = 0. However
ϕ > φ in actual experiment, ω∗ is not real theoretical optimal parameter. In
fact, ω∗ is infinitely close to the optimal numerical parameter as the matrix order
n increases. So we consider ω∗ is the better estimated value of the theoretical
optimal value. �
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5. Numerical examples

In this section, we prove that DSCS methods are more effective than HHS
methods, DTS methods, and the Krylov subspace iteration methods like CG. We
consider CPU time (in seconds) for solving the linear system (record as CPU)
and the iteration steps (record as IT).

We start experiments from the initial vectors u(0) = 0, when the relative
residual error meets

∥∥b−Au(k)
∥∥ ≤ 10−5 ‖b‖, or the number of iteration steps

is greater than 10000, the iteration terminates. All numerical experiments are
performed in MATLAB (version R2016b) on a personal computer with Intel(R)
Core(TM) i5-7200U CPU @ 2.50 GHz 2.70 GHz, 4.00 GB memory and Windows
10 operating system. Actually, we consider the solution to the discretized linear
system at the initial time level.

A = D1 + T, b = ∆tf1 +D1u0

where ∆t = h, f = 0.

Example 5.1 We consider the spatial fractional diffusion equation (1) defined
on the spatial domain (0, 1) and time field (0,+∞), in which u0 = x2(1 − x),
and d(x, t) = 1

x2(1−x)2 [24].

Table 1: The numerical results of Example 5.1 when β = 1.2

Method Index 2ˆ6 2ˆ7 2ˆ8 2ˆ9 2ˆ10 2ˆ11 2ˆ12
HSS IT 25 36 50 70 99 139 197

CPU 0.0029 0.0062 0.0169 0.1034 0.6049 2.8372 14.8313
DTS IT 25 36 50 70 99 139 197

CPU 0.0053 0.0084 0.0204 0.1121 0.614 3.0424 15.6342
CG IT 22 33 48 69 98 148 212

CPU 0.0017 0.0045 0.0073 0.0344 0.1578 0.9123 4.6492
DSCS IT 11 13 16 20 25 30 37

CPU 0.0009 0.0017 0.0046 0.0195 0.1476 0.6371 3.0924

In all experiments, the HSS, DTS, and DSCS methods use theoretically opti-
mal iterative parameter values. In particular, the optimal parameter of the HSS
is selected

√
λmax∗λmin [35], where λ ∈ ρ(H), the value of optimal parameter for

the DTS methods is
√
dmax∗dmin [22], where d ∈ ρ(D), the optimal parameters

α∗, ω∗ of DSCS are defined in section 4.
In the Table 1 and Table 2, we list the number of iteration steps (express as

IT) and the computing time (express as IT) of the methods applied to the ex-
periments. From the above tables, we notice that DSCS significantly outperform
than HSS, DTS, and CG in the field of iteration steps as well as CPU time.



Fast matrix splitting iteration method for the linear system 501

Table 2: The numerical results of Example 5.1 when β = 1.8

Method Index 2ˆ6 2ˆ7 2ˆ8 2ˆ9 2ˆ10 2ˆ11 2ˆ12
HSS IT 26 36 50 70 99 140 197

CPU 0.0021 0.0054 0.0153 0.1158 0.5899 2.7871 15.3897
DTS IT 25 36 50 70 99 139 197

CPU 0.006 0.0098 0.0155 0.1149 0.6076 2.7776 15.5034
CG IT 23 34 48 68 100 148 217

CPU 0.0055 0.006 0.0117 0.0374 0.198 0.8846 4.3161
DSCS IT 13 16 20 24 30 36 44

CPU 0.0014 0.0021 0.0061 0.035 0.1817 0.7282 3.4438

Figure 1: The curves of ρ(L(α)) when β = 1.2

Figure.1 and Figure.2 depict the spectral radius curve of ρ(L(α)) for the
parameter α with n = 29 (”–” curve) and n = 210 (”-” curve), respectively.
And the theoretical optimal parameters α∗ of DSCS iterative method is marked
by the point ”•”. From the Figure.1, we see that the theoretically optimal
value α∗ almost coincides with the experimentally optimal value αexp because
the abscissa axis of parameter α span is too large. Therefore we intercept the
interval which contains the optimal α and narrow the span of abscissa axis, so
that we can observe more clearly in Figure.2. The case of n = 29 is the left figure
and another case of n = 210 is the right figure in the Figure.2. The results of
Figure.2 indicates that the theoretical optimal value is close to the experimental
optimal value, proving that our estimated parameters are valid.
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(a) (b)

Figure 2: The interval near α∗ from Figure.1

Figure 3: The curves of ρ(LDCCS(ω)) when β = 1.2

Figure.3 depict the spectral radius curve of ρ(LDCCS(ω)) for the parameter ω
when β = 1.2 and n = 29. And the one optimal parameter ω∗ of DSCS iteration
method is marked by the symbol ”∗”, the other optimal parameter ω∗ is marked
by ”◦”. Obviously, these two optimal parameters look symmetrical as shown on
the Figure.3. Actually, under the assumptions in section 4, they have almost
the same effect on the optimization of the spectral radius ρ(LDCCS(ω)) because
we split the diagonal matrix D into ωD and (1− ω)D in the estimation process
of ω∗.
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Example 5.1 We consider the spatial fractional diffusion equation (1) defined
on the spatial domain (0, 1) and time field (0,+∞), in which u0 = x(1−x), and
d(x, t) = 512

x3(1+8x)3 [24].

Table 3: The numerical results of Example 5.2 when β = 1.2

Method Index 2ˆ6 2ˆ7 2ˆ8 2ˆ9 2ˆ10 2ˆ11 2ˆ12
HSS IT 72 99 139 195 275 388 548

CPU 0.0068 0.0128 0.0422 0.4043 1.6552 8.064 45.4345
DTS IT 72 99 139 195 275 388 548

CPU 0.0063 0.0089 0.0765 0.432 1.6824 8.2616 45.1749
CG IT 63 127 255 459 698 2047 4095

CPU 0.0046 0.0103 0.0478 0.18 1.1381 11.9645 88.3875
DSCS IT 23 27 33 39 47 57 69

CPU 0.0023 0.0035 0.0084 0.0748 0.2905 1.1796 5.1749

Table 4: The numerical results of Example 5.2 when β = 1.8

Method Index 2ˆ6 2ˆ7 2ˆ8 2ˆ9 2ˆ10 2ˆ11 2ˆ12
HSS IT 72 99 139 195 275 388 548

CPU 0.0062 0.0092 0.0381 0.3945 1.6881 7.9599 41.2243
DTS IT 72 99 139 195 275 388 548

CPU 0.0074 0.0135 0.0469 0.3761 1.6607 7.8374 41.5969
CG IT 63 127 255 454 707 2047 4095

CPU 0.0113 0.0171 0.0511 0.266 0.133 12.0178 79.8445
DSCS IT 23 27 33 39 47 57 69

CPU 0.0022 0.003 0.0091 0.0779 0.2831 1.2126 5.5463

In Table 3, 4, we show the iteration steps (express as ”IT”) and the computing
time (express as ”CPU”) of methods applied to the experiments, which the
parameters of all the methods are theoretically optimal. From tables 3 and
Table 4, we observe again that DSCS significantly outperform than HSS, DTS,
and CG in the field of iteration steps as well as CPU time when β = 1.2 and
β = 1.8 for Example 5.2.
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Figure 4: The curves of ρ(LDCCS(ω)) when β = 1.2

We drew the curves of ρ(LDCCS(ω)) for the parameter ω when n = 27, n =
28, n = 210 (from bottom to top)in the Figure.4. And the one optimal parameter
ω∗ of DSCS iteration method is marked by the symbol ”∗”, the other optimal
parameter ω∗ is marked by ”◦” From Figure.4, we could see the fact that the
larger the matrix order, the smaller the error between ω∗ and ωexp. However,
with the matrix order increasing, the marking points of ω∗ almost coincide in
the Figure.4 due to the scale of the abscissa axis is relatively large.

6. Concluding remarks

In the paper, we propose the DSCS iterative method to solve diagonal-plus-
Toeplitz linear systems obtained by the discretized spatial fractional diffusion
equations. The convergence of the DSCS iterative method is analyzed and we
show the conditions that the DSCS method converges to the unique solution of
linear system. Then we analyze and derive an upper bound σ(α) of the spectral
radius of the DSCS iterative matrix. As the main part of the article, there are
two parameters which have a large influence on the convergence speed of the
DSCS method. Based on reasonable assumptions, we consider and obtain the
optimal form of these parameters, which are both concise and well-calculated.

At last, the numerical experiments illustrate that the DSCS method is more
effective than the HSS and DTS because the spectral radius of the DSCS method
is much lower. Compared with the CG methods, the DSCS is also more effective,
especially when the matrix is larger. In a word, the DSCS has a better numerical
result than HSS, DTS and CG.

However, in the proof process of the optimal parameters ω shown in the pre-
vious sections, we ignore some factors and make some hypotheses in order to
facilitate calculations, which result in the error between the theoretical optimal
value and the experimental optimal value of the parameter ω. Besides, we don’t
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consider the preconditioner according to the DSCS iterative method. The pre-
conditioning methods of DSCS need further in-depth study from both theoretical
and computational perspectives. This will be the further study in future.
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