• Title/Summary/Keyword: Iteration Method

Search Result 1,145, Processing Time 0.024 seconds

Rate-Constrained Key Frame Selection Method using Iteration (반복 과정을 통한 율-제한 주요 화명 선택 기법)

  • Lee, Hun-Cheol;Kim, Seong-Dae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.388-398
    • /
    • 2002
  • Video representation through representative frames (key frames) has been addressed frequently as an efficient way of preserving the whole temporal information of sequence with a considerably smaller amount of data. Such compact video representation is suitable for the purpose of video browsing in limited storage or transmission bandwidth environments. In a case like this, the controllability of the total key frame number (i.e. key frame rate) depending on the storage or bandwidth capacity is an important requirement of a key frame selection method. In this paper, we present a sequential key frame selection method when the number of key frames is given as a constraint. It first selects the desired number of initial key frames and determines non-overlapping initial time intervals that are represented by each key frame. Then, it adjusts the positions of key frames and time intervals by iteration, which minimizes the distortion. Experimental result demonstrates the improved performance of our algorithm over the existing approaches.

A Study on the Optimal Design Method of Reinforced Concrete Two Way Slabs (Direct Method에 의한 鐵筋콘크리트 二方向슬라브의 最適設計에 관한 硏究)

  • Kim, Yong-Hee;Lyu, Hong-Leal;Park, Moon-Ho
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.97-105
    • /
    • 1984
  • We have, at present, found some studies on the optimum design of reinforced concrete about the simple slab but very few about the multi-story and multi-span slab. The aim of this study is to make a optimum design of coalesced beam and column slab constructure. Some results of the evaluation by using the optimalized algorithm that was developed in this study are as follows. 1. Slab was mainly restricted by the constraint of effective depth, bending moment, and minimum steel ratio; especially the effective depth was the preceding crifical constraint. In the optimum design of slab, therefore, the constraint about the minimum thickness should be surely considered. 2. This optimum design is good economy as much as some 3.4&~6.2% compared with the conventional design method. 3. In most case, it was converged by 3 to 6 iteratin regardless of the highest or lowest value and only in case of N=1 and case 1, there is a little oscillation after the 3rd iteration but it makes no difference in taking either the highest or lowest value because the range of oscillation is low as much as about 1.2% of the total construction cost. 4. In this study the result seeking for constraints that make no difference in the least cost design shows that shear stress and maximum steel ration may not be considered in it. 5. Bending moment was converged by one time iteration regardless of the initial value, while steel ratio, in most case, by two times because both bending moment and steel ratio are the fuction of effective depth.

  • PDF

A simple damper optimization algorithm for both target added damping ratio and interstorey drift ratio

  • Aydin, Ersin
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.83-109
    • /
    • 2013
  • A simple damper optimization method is proposed to find optimal damper allocation for shear buildings under both target added damping ratio and interstorey drift ratio (IDR). The damping coefficients of added dampers are considered as design variables. The cost, which is defined as the sum of damping coefficient of added dampers, is minimized under a target added damping ratio and the upper and the lower constraint of the design variables. In the first stage of proposed algorithm, Simulated Annealing, Nelder Mead and Differential Evolution numerical algorithms are used to solve the proposed optimization problem. The candidate optimal design obtained in the first stage is tested in terms of the IDRs using linear time history analyses for a design earthquake in the second stage. If all IDRs are below the allowable level, iteration of the algorithm is stopped; otherwise, the iteration continues increasing the target damping ratio. By this way, a structural response IDR is also taken into consideration using a snap-back test. In this study, the effects of the selection of upper limit for added dampers, the storey mass distribution and the storey stiffness distribution are all investigated in terms of damper distributions, cost function, added damping ratio and IDRs for 6-storey shear building models. The results of the proposed method are compared with two existing methods in the literature. Optimal designs are also compared with uniform designs according to both IDRs and added damping ratios. The numerical results show that the proposed damper optimization method is easy to apply and is efficient to find optimal damper distribution for a target damping ratio and allowable IDR value.

Numerical Study on the Reflection of a Solitary Wave by a Vertical Wall Using the Improved Boussinesq Equation with Stokes Damping (고립파의 수직 벽면 반사와 Stokes 감쇠에 관한 개선된 부시네스크 방정식을 이용한 수치해석 연구)

  • Park, Jinsoo;Jang, Taek Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.64-71
    • /
    • 2022
  • In this paper, we simulate the collision of a solitary wave on a vertical wall in a uniform water channel and investigate the effect of damping on the amplitude attenuation. In order to take into account the damping effect, we introduce the Stokes damping whose dissipation is dependent on the velocity of wave motion on the surface of a thin layer of oil. That is, we use the improved Boussinesq equation with Stokes damping to describe the damped wave motion. Our work mainly focuses on the amplitude attenuation of a propagating solitary wave, which may depend on the Stokes damping together with the initial position and initial amplitude of the wave. We utilize the method of images and a powerful numerical tool (functional iteration method) for solving the improved Boussinesq equation, yielding an effective numerical simulation. This enables us to find the amplitudes of the incident wave and reflected one, whose ratio is a measure of the (wave) amplitude attenuation. Accordingly, we have shown that the reflection of a solitary wave by a vertical wall is dependent on not only the initial amplitude and position of a solitary but the Stokes damping.

The Homotopy Perturbation Method for free vibration analysis of beam on elastic foundation

  • Ozturk, Baki;Coskun, Safa Bozkurt
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.415-425
    • /
    • 2011
  • In this study, the homotopy perturbation method (HPM) is applied to free vibration analysis of beam on elastic foundation. This numerical method is applied on three different axially loaded cases, namely: 1) one end fixed, the other end simply supported; 2) both ends fixed and 3) both ends simply supported cases. Analytical solutions and frequency factors are evaluated for different ratios of axial load N acting on the beam to Euler buckling load, $N_r$. The application of HPM for the particular problem in this study gives results which are in excellent agreement with both analytical solutions and the variational iteration method (VIM) solutions for all the cases considered in this study and the differential transform method (DTM) results available in the literature for the fixed-pinned case.

Development of a Material Mixing Method for Topology Optimization of Multiple Material Structures (다중재료 구조물의 위상 최적화를 위한 재료혼합법의 개발)

  • Han, Seog-Young;Lee, Soo-Kyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.726-731
    • /
    • 2004
  • This paper suggests a material mixing method to mix several materials in a structure. This method is based on ESO(Evolutionary Structural Optimization), which has been used to optimize topology of only one material structure. In this study, two criterions for material transformation and element removal are implemented for mixing several materials in a structure. Optimal topology for a multiple material structure can be obtained through repetitive application of the two criterions at each iteration. Two practical design examples of a short cantilever are presented to illustrate validity of the suggested material mixing method. It is found that the suggested method works very well and a multiple material structure has more stiffness than one material structure has under the same mass.

Re-Entry Trajectory Tracking Via an Inverse Dynamics Method

  • Lee, Dae-Woo;Cho, Kyeum-Rae;Hui Yan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1519-1528
    • /
    • 2004
  • Atmospheric Re-Entry guidance is divided as longitudinal and lateral. This paper proposes a longitudinal reference trajectory and control law using the inverse dynamics method with pseudospectral Legendre method. Application of this method into Re-Entry problem forces a power of calculation time-reduction due to unnecessary of integration or any iteration as well as sufficient accuracy convergence. The used guidance scheme is time-to-go.

Modelling Technique and Model Analysis of Submerged Structures Using Finite Element Method and Boundary Element Method (유한요소법과 경계요소법을 이용한 수중에서의 탄성구조물의 진동모드해석 및 모델링 기법)

  • 김관주;오상륜
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.319-324
    • /
    • 2000
  • This paper shows hot to model the submerged elastic structures and adequate analysis tools for modal behavior when using finite element and boundary element method. Four different cases are reviewed depending on the location of the water and air. First case is that structures are filled with air and water is located outside. Second case is opposite to case one. These cases are solved by direct approach using collocation procedure. Third case is that water is located both sides of structures. Last case is that air is located both sides. These cases are solved by indirect approach using variational procedure. As analysis tools harmonic frequency sweep analysis and eigenvalue iteration method are selected to obtain the natural frequencies of vibrating submerged structures depending on the cases. Results are compared with closed form solutions of submerged spherical shell.

  • PDF

Iterative Analysis for Nonlinear Laminated Rectangular Plates by Finite Difference Method

  • Kim, Chi Kyung
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.13-17
    • /
    • 2002
  • A new system of equations governing the nonlinear thin laminated plates with large deflections using von Karman equations is derived. The effects of transverse shear in the thin interlayer are included as part of the analysis. The finite difference method is used to perform the geometrically nonlinear behavior of the plate. The resultant equations permit the analysis of the effect of transverse shear stress deformation on the overall behavior of the interlayer using the load incremental method. For the purpose of feasibility and validity of this present method, the numerical results are compared with other available solutions for accuracy as well as efficiency. The solution techniques have been implemented and the numerical results of example problem are discussed and evaluated.

Development of a Material Mixing Method using ESO (진화적 구조 최적화를 이용한 재료 혼합법의 개발)

  • 한석영;이수경;신민석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.259-264
    • /
    • 2003
  • This paper suggests a material mixing method to mix several materials in a structure. This method is based on ESO(Evolutionary Structural Optimization), which has been used to optimize topology of only one material structure. In this study, two criterions for material transformation and element removal are implemented for mixing several materials in a structure. Optimal topology for a multiple material structure can be obtained through repetitive application of the two criterions at each iteration. Two practical design examples of a short cantilever are presented to illustrate validity of the suggested material mixing method. It is found that the suggested method works very well and a multiple material structure has more stiffness than one material structure has under the same mass.

  • PDF