• Title/Summary/Keyword: Iteration

Search Result 1,885, Processing Time 0.346 seconds

The algorithm of the load flow problem for integrated distributed generation network (분산전원의 특성을 고려한 조류계산의 새로운 알고리즘 고찰)

  • Nguyen, Dinh Hung;Nguyen, Minh Y.;Nguyen, Van Thang;Kim, Tae-Won;Kim, Kern-Joong;Yoon, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.168-169
    • /
    • 2011
  • The aim of this paper is to present a new algorithm for the load flow problem using modified Newton-Raphson (NR) iteration method and a approach to derive a simple formula to compensate the reactive power at some heavy load bus. The reactive power source used in this research is the DG which is adjacent to the heavy load. Phenomena of low voltages may cause the load flow calculation process to diverge. In modified NR method, low voltages will be detected and corrected before the next iteration. Therefore, the results of load flow calculation process satisfy the voltage constraint i.e. higher than the lower voltage limit or higher than the critical voltage in case the conventional load flow diverges. Linearizing the power network using PTDFs is a simple method with accepted errors. A new value of voltage at the DG terminal is computed in terms of the voltage deviation of load buses. In this approach, solving the entire system is unnecessary.

  • PDF

A Shape Finding of the Cable Structures by Flexibility Iteration Procedure and Nonlinear FEM (유연성 반복과정과 비선형유한요소법에 의한 케이블 구조물의 형태탐색)

  • 황보석;서삼열;진권태
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.133-140
    • /
    • 1990
  • Analysis of cable structures is complex because their force - displacement relationships are highly nonlinear and also because large deformations introduce geometric nonlinearity. Therefore, we must take account their geometric nonlinearity in the analysis and find the equilibrated shape of cable structures. In this paper, to slove these problems, numerical procedures involving geometrical nonlinearity are introduced. They are applicable to general cable net, flexible transmission lines and suspended cable roof. These procedures are divided into two parts; one is to obtain the equilibrated shapes and stresses of the cable structures with uniform load by flexibility iteration method, the other is to analyse the equilibrated structures subjected to nodal external forces by nonlinear finite element method.

  • PDF

Miniaturization of Log-Periodic Dipole Array Antenna for PS-LTE Service (재난안전 통신망 서비스를 위한 대수 주기 다이폴 배열 안테나의 소형화)

  • Jeon, Hoo-Dong;Heo, Soo-Young;Ko, Ji-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.170-176
    • /
    • 2017
  • In this paper, we proposed the miniaturized structure of the Log-Periodic Dipole Array(LPDA) antenna for PS-LTE(Pubic Safety-Long Term Evolution) service. The length of array dipole was shortened by adding a fractal tree element with iteration to the array dipole to miniaturize the LPDA antenna. As the result, the proposed LPDA antenna was reduced up to 25 %, compared a typical LPDA antenna. To validation of the proposed LPDA antenna specification, the proposed LPDA antenna is fabricated using aluminum with 1.5 mm thickness and performances are measured. Comparison between simulation result and experiment shows good agreement.

A METHOD USING PARAMETRIC APPROACH WITH QUASINEWTON METHOD FOR CONSTRAINED OPTIMIZATION

  • Ryang, Yong-Joon;Kim, Won-Serk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.127-134
    • /
    • 1989
  • This paper proposes a deformation method for solving practical nonlinear programming problems. Utilizing the nonlinear parametric programming technique with Quasi-Newton method [6,7], the method solves the problem by imbedding it into a suitable one-parameter family of problems. The approach discussed in this paper was originally developed with the aim of solving a system of structural optimization problems with frequently appears in various kind of engineering design. It is assumed that we have to solve more than one structural problem of the same type. It an optimal solution of one of these problems is available, then the optimal solutions of thel other problems can be easily obtained by using this known problem and its optimal solution as the initial problem of our parametric method. The method of nonlinear programming does not generally converge to the optimal solution from an arbitrary starting point if the initial estimate is not sufficiently close to the solution. On the other hand, the deformation method described in this paper is advantageous in that it is likely to obtain the optimal solution every if the initial point is not necessarily in a small neighborhood of the solution. the Jacobian matrix of the iteration formula has the special structural features [2, 3]. Sectioon 2 describes nonlinear parametric programming problem imbeded into a one-parameter family of problems. In Section 3 the iteration formulas for one-parameter are developed. Section 4 discusses parametric approach for Quasi-Newton method and gives algorithm for finding the optimal solution.

  • PDF

Stall Prediction of Wing Using the Nonplanar Lifting Surface Theory and an Iterative Decambering Approach (비평면 양력면 이론과 반복적 캠버변형 기법을 이용한 날개의 실속 특성 예측)

  • 조정현;조진수;조연우
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.1-6
    • /
    • 2006
  • This paper predicts the stall characteristics of three-dimensional wings. An iterative decambering approach is introduced into the nonplanar lifting surface method to take into consideration the stall characteristics of wings. An iterative decambering approach uses known airfoil lift curve and moment curve to predict the stall characteristics of wings. The multi-dimensional Newton iteration is used to take into consideration the coupling between the different sections of wings. Present results are compared with experiments and other numerical results. Computed results are in good agreement with other data. This scheme can be used for any wing with the twist or control surface and for wing-wing configurations such as wing-tail configuration or canard-wing configuration.

Calculation of Geoidal Height refered to Bessel Ellipsoid From EGM96 Model (EGM96 모델을 이용한 Bessel 지오이드고의 계산)

  • 최경재;최윤수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • In order to calculate geoidal height refered to Bessel ellipsoid, methods to translate geoidal heights from a certain coordinate system to an arbitrary system with the corresponding ellipsoid are studied. and geoidal heights refered to Bessel ellipsoid were computed from EGM96 Model refered to GRS80 using iteration method pro-posed in this paper. Transformation parameters between WGS84 and Bessel were calculated using geoidal heights computed from iteration method. The result of coordinate transformation(standard deviation) were 0.009 second in latitude and 0.006 in longitude and 0.393m in orthometric height.

  • PDF

Evaluation of Interference Alignment for MIMO-IC based on IEEE 802.11n (IEEE 802.11n 기반 MIMO-IC의 간섭정렬 성능평가)

  • Bae, Insan;Yun, Heesuk;Kim, Jaemoung
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.47-52
    • /
    • 2013
  • In this paper, The existing interference alignment algorithms were analyzed in Rayleigh fading channel environment. The interference alignment techniques are divided to two parts. First thing is Iterative-method, another is Linear-method. Iterative method needs local channel info, but it has the constraint of iteration. On the other hand Linear-method must have global channel info, but has free of iteration and better performance. This paper evaluates the performance of interference alignment algorithms in Rayleigh fading channel of outdoor environment and WLAN channel based on IEEE 802.11n of indoor environment.

Edge-Preserving Iterative Reconstruction in Transmission Tomography Using Space-Variant Smoothing (투과 단층촬영에서 공간가변 평활화를 사용한 경계보존 반복연산 재구성)

  • Jung, Ji Eun;Ren, Xue;Lee, Soo-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.219-226
    • /
    • 2017
  • Penalized-likelihood (PL) reconstruction methods for transmission tomography are known to provide improved image quality for reduced dose level by efficiently smoothing out noise while preserving edges. Unfortunately, however, most of the edge-preserving penalty functions used in conventional PL methods contain at least one free parameter which controls the shape of a non-quadratic penalty function to adjust the sensitivity of edge preservation. In this work, to avoid difficulties in finding a proper value of the free parameter involved in a non-quadratic penalty function, we propose a new adaptive method of space-variant smoothing with a simple quadratic penalty function. In this method, the smoothing parameter is adaptively selected for each pixel location at each iteration by using the image roughness measured by a pixel-wise standard deviation image calculated from the previous iteration. The experimental results demonstrate that our new method not only preserves edges, but also suppresses noise well in monotonic regions without requiring additional processes to select free parameters that may otherwise be included in a non-quadratic penalty function.

STRONG CONVERGENCE OF COMPOSITE IMPLICIT ITERATIVE PROCESS FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS

  • Gu, Feng
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • Let E be a uniformly convex Banach space and K be a nonempty closed convex subset of E. Let ${\{T_i\}}^N_{i=1}$ be N nonexpansive self-mappings of K with $F\;=\;{\cap}^N_{i=1}F(T_i)\;{\neq}\;{\theta}$ (here $F(T_i)$ denotes the set of fixed points of $T_i$). Suppose that one of the mappings in ${\{T_i\}}^N_{i=1}$ is semi-compact. Let $\{{\alpha}_n\}\;{\subset}\;[{\delta},\;1-{\delta}]$ for some ${\delta}\;{\in}\;(0,\;1)$ and $\{{\beta}_n\}\;{\subset}\;[\tau,\;1]$ for some ${\tau}\;{\in}\;(0,\;1]$. For arbitrary $x_0\;{\in}\;K$, let the sequence {$x_n$} be defined iteratively by $\{{x_n\;=\;{\alpha}_nx_{n-1}\;+\;(1-{\alpha}_n)T_ny_n,\;\;\;\;\;\;\;\;\; \atop {y_n\;=\;{\beta}nx_{n-1}\;+\;(1-{\beta}_n)T_nx_n},\;{\forall}_n{\geq}1,}$, where $T_n\;=\;T_{n(modN)}$. Then {$x_n$} convergence strongly to a common fixed point of the mappings family ${\{T_i\}}^N_{i=1}$. The result presented in this paper generalized and improve the corresponding results of Chidume and Shahzad [C. E. Chidume, N. Shahzad, Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings, Nonlinear Anal. 62(2005), 1149-1156] even in the case of ${\beta}_n\;{\equiv}\;1$ or N=1 are also new.

  • PDF

An Analytical Model for Deriving The Threshold Voltage of A Short-channel Intrinsic-body SDG SOI MOSFET (Short-Channel Intrinsic-Body SDG SOI MOSFET의 문턱전압 도출을 위한 해석적 모델)

  • Jang, Eun-Sung;Oh, Young-Hae;Suh, Chung-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.1-7
    • /
    • 2009
  • In this paper, a simple analytical model for deriving the threshold voltage of a short-channel intrinsic-body SDG SOI MOSFET is suggested. Using the iteration method, both Laplace equations in intrinsic silicon body and gate oxide are solved two-dimensionally. Obtained potential distributions in both regions are expressed in terms of fourth and fifth-order of the coordinate perpendicular to the silicon channel direction. Making use of them, the surface potential is obtained to derive the threshold voltage in a closed-form. Simulation results show the fairly accurate dependencies of the threshold voltage on the various device parameters and applied bias voltages.