• Title/Summary/Keyword: Iteration

Search Result 1,885, Processing Time 0.035 seconds

Effective Iterative Control Method to Reduce the Decoding Delay for Turbo TCM Decoder (터보 TCM 디코더의 복호 지연을 감소시키기 위한 효율적인 반복복호 제어기법)

  • 김순영;김정수;장진수;이문호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.816-822
    • /
    • 2003
  • In this paper, we propose an efficient iteration control method with low complexity for Turbo TCM(Turbo Trellis Coded Modulation) decoding which will be used fur power-limited environment. As the decoding approaches the performance limit of a given turbo code, any further iteration results in very little improvement. Therefore, it is important to devise an efficient criterion to stop the iteration process and prevent unnecessary computations and decoding delay. This paper presents an efficient algorithm for turbo TCM decoding that can greatly reduce the delay and iteration number. The proposed method use adaptive iteration number according to the criterion using the extrinsic information variance parameter in turbo TCM decoding process. The simulation results show that the proposed technique effectively can reduce the decoding delay and computation with very little performance degradation.

General evolutionary path for fundamental natural frequencies of structural vibration problems: towards optimum from below

  • Zhao, Chongbin;Steven, G.P.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.513-527
    • /
    • 1996
  • In this paper, both an approximate expression and an exact expression for the contribution factor of an element to the natural frequency of the finite element discretized system of a structure in general and a membrane in particular have been derived from the energy conservation principle and the finite element formulation of structural eigenvalue problems. The approximate expression for the contribution factor of an element is used to predict and determine the elements to be removed in an iteration since it depends only on the quantities associated with the old system in the iteration. The exact expression for the contribution factor of an element makes it possible to check whether the element is correctly removed at the end of an iteration because it depends on both the old system and the new system in the iteration. Thus, the combined use of the approximate expression and the exact expression allows a considerable number of elements to be removed in a single iteration so that the efficiency of the evolutionary structural optimization method can be greatly improved for solving the natural frequency optimization problem of a structure. A square membrane with different boundary supports has been chosen to investigate the general evolutionary path for the fundamental natural frequency of the structure. The related results indicated that if the objective of a structural optimization is to raise the fundamental natural frequency of the structure to an optimal value, the general evolutionary path during its optimization is that the elements are gradually removed along the direction from the area surrounded by the contour of the highest value to that surrounded by the contour of the lowest value.

Iterative Cumulant Moment Method for solution of Boltzmann Equation and its Application to Shock Wave Structure (반복적 Cumulant 모멘트 방법에 의한 Boltzmann 방정식의 해법과 충격파구조에 관한 연구)

  • Ohr, Young Gie
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.398-410
    • /
    • 1998
  • For non-linear solution of the Boltzmann equation, the cumulant moment method has been studied. To apply the method to the normal shock wave problem, we restricted ourselves to the monatomic Maxwell molecular gases. The method is based on the iterative approach developed by Maxwell-Ikenberry-Truesdell (MIT). The original MIT approach employs the equilibrium distribution function for the initial values in beginning the iteration. In the present work, we use the Mott-Smith bimodal distribution function to calculate the initial values and follow the MIT iteration procedure. Calculations have been carried out up to the second iteration for the profiles of density, temperature, stress, heat flux, and shock thickness of strong shocks, including the weak shock thickness of Mach range less than 1.4. The first iteration gives a simple analytic expression for the shock profile, and the weak shock thickness limiting law which is in exact accord with the Navier-Stokes theory. The second iteration shows that the calculated strong shock profiles are consistent with the Monte Carlo values quantitatively.

  • PDF

Efficient Determination of Iteration Number for Algebraic Reconstruction Technique in CT (CT의 대수적재구성기법에서 효율적인 반복 횟수 결정)

  • Joon-Min, Gil;Kwon Su, Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.141-148
    • /
    • 2023
  • The algebraic reconstruction technique is one of the reconstruction methods in CT and shows good image quality against noise-dominant conditions. The number of iteration is one of the key factors determining the execution time for the algebraic reconstruction technique. However, there are some rules for determining the number of iterations that result in more than a few hundred iterations. Thus, the rules are difficult to apply in practice. In this study, we proposed a method to determine the number of iterations for practical applications. The reconstructed image quality shows slow convergence as the number of iterations increases. Image quality 𝜖 < 0.001 was used to determine the optimal number of iteration. The Shepp-Logan head phantom was used to obtain noise-free projection and projections with noise for 360, 720, and 1440 views were obtained using Geant4 Monte Carlo simulation that has the same geometry dimension as a clinic CT system. Images reconstructed by around 10 iterations within the stop condition showed good quality. The method for determining the iteration number is an efficient way of replacing the best image-quality-based method, which brings over a few hundred iterations.

Numerical Solutions of Third-Order Boundary Value Problems associated with Draining and Coating Flows

  • Ahmed, Jishan
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.651-665
    • /
    • 2017
  • Some computational fluid dynamics problems concerning the thin films flow of viscous fluid with a free surface and draining or coating fluid-flow problems can be delineated by third-order ordinary differential equations. In this paper, the aim is to introduce the numerical solutions of the boundary value problems of such equations by variational iteration method. In this paper, it is shown that the third-order boundary value problems can be written as a system of integral equations, which can be solved by using the variational iteration method. These solutions are gleaned in terms of convergent series. Numerical examples are given to depict the method and their convergence.

Control and Parameter Estimation of Uncertain Robotic Systems by An Iterative Learning Method (불확실한 로보트 시스템의 제어와 파라미터 추정을 위한 반복학습제어기법)

  • Kuc, Tae-Yong;Lee, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.421-424
    • /
    • 1990
  • An iterative learning control scheme for exact-tracking control and parameter estimation of uncertain robotic systems is presented. In the learning control structure, tracking and feedforward input converge globally and asymptotically as iteration increases. Since convergence of parameter errors depends only on the persistent exciting condition of system trajectories along the iteration independently of length of trajectories, it may be achieved with only system trajectories of small duration. In addition, these learning control schemes are expected to be effectively applicable to time-varying parametric systems as well as time-invariant systems, for the parameter estimation is performed at each fixed time along the iteration. Finally, no usage of acceleration signal and no in version of estimated inertia matrix in the parameter estimator makes these learning control schemes more feasible.

  • PDF

Performance of Iterative Multiuser Detector and Turbo Decoder in WCDMA System (WCDMA 시스템에l서 반복 다중사용자 검출기 및 터보 복호기의 성능)

  • Kim, Jeong-Goo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.4
    • /
    • pp.40-46
    • /
    • 2006
  • The performance of iterative multiuser detector and turbo decoder is presented to provide high quality multimedia services in WCDMA (wideband code division multiple access) system in this paper. Especially the relationship between the local iteration of turbo decoder and the global iteration of multiuser detector including the turbo decoder is analyzed. As a result, three local iterations and three global iterations are considered to be sufficient to provide satisfactory error performance with resonable complexity. The interference cancellation capability of global iteration is improved when the number of users is increased.

  • PDF

Improved Parallel Loop Scheduling Algorithm on Shared Memory Systems (공유메모리 시스템에서 개선된 병렬 루프 스케쥴링 알고리즘)

  • 이영규;박두순
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.04a
    • /
    • pp.453-457
    • /
    • 2000
  • 병렬 시스템 환경에서 최적의 스케쥴링을 수행하기 위해서는 병렬성을 가진 iteration 들에 대해 최소의 동기화 오버헤드와 load balance 가 달성하도록 스케쥴링을 수행해야한다. 다중 프로세서들은 실행을 위하여 메모리로부터 iteration 들에 대한 chunk를 계산한 후 할당받게 된다. 이때, 각 프로세서들의 상호 배타적인 메모리 접근으로 많은 오버헤드 및 병목현상이 발생된다. 또한, 프로세서에게 할당된 chunk 내 iteration 들의 실행시간 분포가 서로 상이한 경우에는 load imbalance 의 원인이 되어 결과적으로 전체 스케쥴링에 나쁜 영향을 준다. 따라서, 최적의 스케쥴링을 수행하기 위해서 본 논문에서는 기존의 스케쥴링 방법들에서 문제점들을 도출하고 자료의 국부성과 프로세서 동족성을 고려한 개선된 병렬 루프 알고리즘을 제안하고, 성능평가를 통해 개선된 알고리즘이라는 것을 보였다.

  • PDF

Operating Room Reservation Problem Considering Patient Priority : Modified Value Iteration Method with Binary Search (환자 우선순위를 고려한 수술실 예약 : 이진검색을 활용한 수정 평가치반복법)

  • Min, Dai-Ki
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.274-280
    • /
    • 2011
  • Delayed access to surgery may lead to deterioration in the patient condition, poor clinical outcomes, increase in the probability of emergency admission, or even death. The purpose of this work is to decide the number of patients selected from a waiting list and to schedule them in accordance with the operating room capacity in the next period. We formulate the problem as an infinite horizon Markov Decision Process (MDP), which attempts to strike a balance between the patient waiting times and overtime works. Structural properties of the proposed model are investigated to facilitate the solution procedure. The proposed procedure modifies the conventional value iteration method along with the binary search technique. An example of the optimal policy is provided, and computational results are given to show that the proposed procedure improves computational efficiency.

STRONG AND Δ-CONVERGENCE OF A FASTER ITERATION PROCESS IN HYPERBOLIC SPACE

  • AKBULUT, SEZGIN;GUNDUZ, BIROL
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.209-219
    • /
    • 2015
  • In this article, we first give metric version of an iteration scheme of Agarwal et al. [1] and approximate fixed points of two finite families of nonexpansive mappings in hyperbolic spaces through this iteration scheme which is independent of but faster than Mann and Ishikawa scheme. Also we consider case of three finite families of nonexpansive mappings. But, we need an extra condition to get convergence. Our convergence theorems generalize and refine many know results in the current literature.