• 제목/요약/키워드: Item-based recommendation

검색결과 198건 처리시간 0.03초

일반화 적응 심층 잠재요인 추천모형 (A Generalized Adaptive Deep Latent Factor Recommendation Model)

  • 김정하;이지평;장성현;조윤호
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.249-263
    • /
    • 2023
  • 대표적인 추천 시스템 방법론인 협업 필터링(Collaborative Filtering)에는 이웃기반 방법(Neighbor Methods)과 잠재 요인 모델(Latent Factor model)이라는 두 가지 접근법이 있다. 이중 행렬 분해(Matrix Factorization)를 이용하는 잠재 요인 모델은 사용자-아이템 상호작용 행렬을 두 개의 보다 낮은 차원의 직사각형 행렬로 분해하고 이들의 행렬 곱으로 아이템의 평점(Rating)을 예측한다. 평점 패턴으로부터 추출된 요인 벡터들을 통해 사용자와 아이템 속성을 포착할 수 있기 때문에 확장성, 정확도, 유연성 측면에서 이웃기반 방법보다 우수하다고 알려져 있다. 하지만 평점이 지정되지 않은 아이템에 대해서는 선호도가 다른 개개인의 다양성을 반영하지 못하는 근본적인 한계가 있고 이는 반복적이고 부정확한 추천을 초래하게 된다. 이러한 잠재요인 모델의 한계를 개선하고자 각각의 아이템 별로 사용자의 선호도를 적응적으로 학습하는 적응 심층 잠재요인 모형(Adaptive Deep Latent Factor Model; ADLFM)이 등장하였다. ADLFM은 아이템의 특징을 설명하는 텍스트인 아이템 설명(Item Description)을 입력으로 받아 사용자와 아이템의 잠재 벡터를 구하고 어텐션 스코어(Attention Score)를 활용하여 개인의 다양성을 반영할 수 있는 방법을 제시한다. 하지만 아이템 설명을 포함하는 데이터 셋을 요구하기 때문에 이 방법을 적용할 수 있는 대상이 많지 않은 즉 일반화에 있어 한계가 있다. 본 연구에서는 아이템 설명 대신 추천시스템에서 보편적으로 사용하는 아이템 ID를 입력으로 하고 Self-Attention, Multi-head attention, Multi-Conv1d 등 보다 개선된 딥러닝 모델 구조를 적용함으로써 ADLFM의 한계를 개선할 수 있는 일반화된 적응 심층 잠재요인 추천모형 G-ADLFRM을 제안한다. 다양한 도메인의 데이터셋을 가지고 입력과 모델 구조 변경에 대한 실험을 진행한 결과, 입력만 변경했을 경우 동반되는 정보손실로 인해 ADLFM 대비 MAE(Mean Absolute Error)가 소폭 높아지며 추천성능이 하락했지만, 처리할 정보량이 적어지면서 epoch 당 평균 학습속도는 대폭 향상되었다. 입력 뿐만 아니라 모델 구조까지 바꿨을 경우에는 가장 성능이 우수한 Multi-Conv1d 구조가 ADLFM과 유사한 성능을 나타내며 입력변경으로 인한 정보손실을 충분히 상쇄시킬 수 있음을 보여주었다. 결론적으로 본 논문에서 제시한 모형은 기존 ADLFM의 성능은 최대한 유지하면서 빠른 학습과 추론이 가능하고(경량화) 다양한 도메인에 적용할 수 있는(일반화) 새로운 모형임을 알 수 있다.

일관성 기반의 신뢰도 정의에 의한 협업 필터링 (Collaborative Filtering by Consistency Based Trust Definition)

  • 김형도
    • 한국전자거래학회지
    • /
    • 제14권1호
    • /
    • pp.1-11
    • /
    • 2009
  • 사용자간 유사도에 의한 협업 필터링에서 추천 품질이 안정적인 상태에 이르기 위해서는 많은 이웃들이 필요하다. 이것은 높은 사용자간 유사도가 제품에 대한 동일한 선호도를 일관되게 보장하지 못하기 때문이다. 유사하지 않은 사용자라 할지라도 제품 선택에서 사용자 간에 일관성이 있다면, 선호도 예측에서 유용하게 사용될 수 있다. 이 논문에서는 일관성을 기준으로 신뢰도를 정의하고, 이를 기반으로 이웃을 선정하여 선호도를 예측하는 협업 필터링 방법을 제시한다. 이 방법에 의한 추천 품질이 안정적인 상태에 이르기 위해서 필요한 이웃들의 수가 유사도에 의한 방법보다 매우 적으며, 추천 품질 또한 우수하다.

  • PDF

클러스터링 기반 사례기반추론을 이용한 웹 개인화 추천시스템 (A Web Personalized Recommender System Using Clustering-based CBR)

  • 홍태호;이희정;서보밀
    • 지능정보연구
    • /
    • 제11권1호
    • /
    • pp.107-121
    • /
    • 2005
  • 최근, 추천시스템과 협업 필터링에 대한 연구가 학계와 업계에서 활발하게 이루어지고 있다. 하지만, 제품 아이템들은 다중 값 속성을 가질 수 있음에도 불구하고, 기존의 연구들은 이러한 다중 값 속성을 반영하지 못하고 있다. 이러한 한계를 극복하기 위하여, 본 연구에서는 추천시스템을 위한 새로운 방법론을 제시하고자 한다. 제안된 방법론은 제품 아이템에 대한 클러스터링 기법에 기반하여 다중 값 속성을 팔용하며, 정확한 추천을 위하여 협업 필터링을 적용한다. 즉, 사용자간의 상관관계만이 아니라 아이템간의 상관관계를 고려하기 위하여, 사용자 클러스터링에 기반한 사례기반추론과 아이템 속성 클러스터링에 기반한 사례기반추론 모두가 협업 필터링에 적용되는 것이다. 다중 값 속성에 기반하여 아이템을 클러스터링 함으로써, 아이템의 특징이 명확하게 식별될 수 있다. MovieLens 데이터를 이용하여 실험을 하였으며, 제안된 방법론이 기존 방법론의 성능을 능가한다는 결과를 얻을 수 있었다.

  • PDF

세렌디피티 지표를 이용한 추천시스템의 품질 평가 (Evaluating the Quality of Recommendation System by Using Serendipity Measure)

  • 체렌돌람;신택수
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.89-103
    • /
    • 2019
  • 최근 추천시스템의 품질평가 관점에서 이에 대한 다양한 연구들이 진행되고 있다. 추천시스템은 기본적으로 사용자들에게 특정 아이템에 대한 개인화된 추천을 제공하는데 목적이 있으며, 대부분의 추천시스템은 항상 사용자 또는 아이템과 가장 관련 있는 아이템을 추천한다. 그리고 이러한 추천시스템의 성과는 전통적으로 다양한 예측정확도 등에 초점을 두어 왔다. 그러나, 추천시스템은 예측가능성 차원에서 정확해야 할 뿐만 아니라 사용자들에게 유용해야 한다. 특히 최근의 추천시스템에 대한 연구로서, 추천시스템의 평가기준에 속하는, 추천시스템에 대한 사용자 만족도(품질)는 추천시스템이 얼마나 정확하게 추천하느냐 뿐만 아니라 사용자의 의사결정에 얼마나 충분히 도움이 되는지와 관계가 깊다. 예를 들어, 특히 높은 수준의 세렌디티피한 추천은 사용자들이 뜻밖의 아이템이면서 흥미로운 아이템을 찾는데 도움이 된다. 여기서, 세렌디피티란 추천 아이템이 사용자에게 매력적인 동시에 뜻밖의(비기대성의) 아이템인 정도를 의미한다. 본 연구는 추천시스템의 성과를 나타내는 세렌디피티 지표를 추천시스템에 적용하여 추천시스템의 품질을 평가하는 것을 목표로 한다. 본 연구에서는 세렌디피티 지표는 관련성(매력)이 있는 동시에 뜻밖인(비기대성의) 아이템을 추천하는 정도로 정의하고, 이 세렌디피티 지표를 측정하기 위해, 추천시스템이 사용자들에게 예상치 못한 유용한 아이템을 찾을 수(또는 추천할 수) 있는 정도를 평가하였다. 본 연구의 주요 실증분석결과로는, 아이템기반 협력 필터링 기법이 사용자기반 협력 필터링 기법보다 더 높은 세렌디피티값을 가지며, 따라서, 추천시스템의 품질평가 차원에서 아이템기반 협력 필터링 기법은 사용자기반 협력 필터링 기법보다는 더 좋은 추천 품질을 갖고 있음을 보여 주었다.

Time-aware Item-based Collaborative Filtering with Similarity Integration

  • Lee, Soojung
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권7호
    • /
    • pp.93-100
    • /
    • 2022
  • 인터넷 상의 정보 과부하 시대에 필수 불가결한 기능인 추천 시스템은 사용자가 선호할 만한 상품을 추천하는 서비스로서 여러 상업용 사이트에서 성공적으로 제공되고 있다. 최근 대표적인 추천 기법인 협력 필터링의 성능 개선을 위하여 항목 평가 시간을 반영하려는 연구가 활발하다. 이 연구들의 핵심 아이디어는 과거에 평가한 항목일수록 기하급수적으로 낮은 가중치를 두어 추천 결과를 산출하는 것이다. 그러나 이는 항목의 특성에 따른 사용자들의 선호도 변화를 고려하지 않고 모든 항목들에 대하여 일률적인 시간 함수를 적용한다는 단점을 가진다. 본 연구는 시간에 따른 항목 간의 유사도값 변화를 가중합으로 통합하는 새로운 유사도 척도를 개발함으로써 기존과 전혀 다른 관점의 시간 인지 협력 필터링 기법을 제안한다. 실험 결과, 제안 방법의 예측 성능과 추천 성능은 기존의 대표적 시간 인지 방법과 전통적 방법들에 비해 월등하게 우수하였다.

사용자 청취 습관과 태그 정보를 이용한 하이브리드 음악 추천 시스템 (A Hybrid Music Recommendation System Combining Listening Habits and Tag Information)

  • 김현희;김동건;조진남
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권2호
    • /
    • pp.107-116
    • /
    • 2013
  • 본 연구에서는 소셜 음악 사이트에서 사용자들이 음악 아이템을 청취한 횟수와 생성한 태그 정보를 혼합하여 음악을 추천하는 시스템을 제안한다. 현재, 상용화된 음악 추천 시스템들은 주로 사용자의 청취 습관과 외부적인 선호도 입력값을 기반으로 음악을 추천하고 있다. 그러나 이 방식은 아직 음악을 청취한 사용자가 많지 않은 새로운 음악이나 청취 정보가 없는 새로운 사용자의 경우 추천하는 데 어려움이 있다. 이 문제를 해결하기 위해서 본 논문에서는 사용자가 선정한 키워드를 아이템에 부여하는 협업 태깅으로 생성된 태그 정보를 활용하였다. 태그의 의미를 파악하여 감정 표현의 정도에 따라 가중치를 부여한 뒤, 태그 점수와 청취 횟수를 혼합하여 음악 아이템의 선호도를 산출하였다. 이를 기반으로 사용자 프로파일을 생성하고 협업 필터링 알고리즘을 수행하였다. 제안하는 추천 방법의 효율성을 평가하기 위해서, 청취 습관 기반 추천, 태그 점수 기반 추천, 하이브리드 추천 방법의 세 가지 추천 방법에 대해서 정확도, 재현율, 그리고 F-measure를 계산하였다. 실험 결과에 대해 통계적 검증을 시행한 결과, 하이브리드 추천 방법이 다른 두 가지 방식보다 통계적으로 유의한 차이를 보여 성능이 우수한 것으로 나타났다.

K-means 클러스터링과 트랜스포머 기반의 교차 도메인 추천 (Cross-Domain Recommendation based on K-Means Clustering and Transformer)

  • 김태훈;김영곤;박정민
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권5호
    • /
    • pp.1-8
    • /
    • 2023
  • 교차 도메인 추천은 다른 도메인에 있는 관련 사용자 정보 데이터와 아이템 데이터를 공유하는 방법입니다. 주로 사용자 중복이 많은 온라인 쇼핑몰이나 유튜브, 넷플릭스와 같은 멀티미디어 서비스 컨텐츠에서 사용됩니다. K-means 클러스터링을 통해 사용자 데이터와 평점을 기반으로 군집화를 실시하여 임베딩을 생성합니다. 이 결과를 트랜스포머 네트워크를 통해 학습한 후 사용자 만족도를 예측합니다. 그런 다음 트랜스포머 기반 추천 모델을 사용하여 사용자에게 적합한 아이템을 추천합니다. 이 연구를 통해 추천함으로써 더 적은 시간적 비용으로 초기 사용자 문제를 예측하고 사용자들의 만족도를 높일 수 있다는 결과를 실험을 통해 보여주었습니다.

Item Dependency Map을 기반으로 한 개인화된 추천기법 (Personalized Recommendation based on Item Dependency Map)

  • 염선희;조동섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2789-2791
    • /
    • 2001
  • 데이터 마이닝을 통해 우리는 숨겨진 지식, 예상되지 않았던 경향 그리고 새로운 법칙들을 방대한 데이터에서 이끌어내고자 한다. 본 논문에서 우리는 사용자의 구매 패턴을 발견하여 사용자가 원하는 상품을 미리 예측하여 추천하는 알고리즘을 소개하고자 한다. 제안하고 있는 item dependency map은 구매된 상품간의 관계를 수식화 하여 행렬의 형태로 표현한 것이다. Item dependency map의 값은 사용자가 A라는 상품을 구매한 후 B상품을 살 확률이다. 이런 정보를 가지고 있는 item dependency map은 홉필드 네트윅(Hopfield network)에서 연상을 위한 패턴 값으로 적용된다. 홉필드 네트웍은 각 노드사이의 연결가중치에 기억하고자 하는 것들을 연상시킨 뒤 어떤 입력을 통해서 전체 네트워크가 어떤 평형상태에 도달하는 방식으로 작동되는 신경망 중의 하나이다. 홉필드 네트웍의 특징 중의 하나는 부분 정보로부터 전체 정보를 추출할 수 있는 것이다. 이러한 특징을 가지고 사용자들의 일반적인 구매패턴을 일부 정보만 가지고 예측할 수 있다. Item dependency map은 홉필드 네트윅에서 사용자들의 그룹별 패턴을 학습하는데 사용된다. 따라서 item dependency map이 얼마나 사용자 구매패턴에 대한 정보를 가지고 있는지에 따라 그 결과가 결정되는 것이다. 본 논문은 정확한 item dependency map을 계산해 내는 알고리즘을 주로 논의하겠다.

  • PDF

Factorization Machine을 이용한 추천 시스템 설계 (A Recommender System Using Factorization Machine)

  • 정승윤;김형중
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권4호
    • /
    • pp.707-712
    • /
    • 2017
  • 데이터의 양이 기하급수적으로 증가함에 따라 추천 시스템(recommender system)은 영화, 도서, 음악 등 다양한 산업에서 관심을 받고 있고 연구 대상이 되고 있다. 추천시스템은 사용자들의 과거 선호도 및 클릭스트림(click stream)을 바탕으로 사용자에게 적절한 아이템을 제안하는 것을 목적으로 한다. 대표적인 예로 넷플릭스의 영화 추천 시스템, 아마존의 도서 추천 시스템 등이 있다. 기존의 선행 연구는 협업적 여과, 내용 기반 추천, 혼합 방식의 3가지 방식으로 크게 분류할 수 있다. 하지만 기존의 추천 시스템은 희소성(sparsity), 콜드스타트(cold start), 확장성(scalability) 문제 등의 단점들이 있다. 이러한 단점들을 개선하고 보다 정확도가 높은 추천 시스템을 개발하기 위해 실제 온라인 기업의 상품구매 데이터를 이용해 factorization machine으로 추천시스템을 설계했다.

Design and Implementation of YouTube-based Educational Video Recommendation System

  • Kim, Young Kook;Kim, Myung Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.37-45
    • /
    • 2022
  • 2020년 기준 대표적인 온라인 동영상 플랫폼인 유튜브에는 1분에 약 500시간의 동영상이 업로드되고 있다. 이에 업로드된 다수의 다양한 동영상을 통해 정보를 획득하는 사용자의 수가 늘고 있어 온라인 동영상 플랫폼들은 더 나은 추천 서비스를 제공하기 위해 노력하고 있다. 현재 사용되고 있는 추천 서비스는 사용자의 시청 기록을 기반으로 사용자에게 동영상을 추천하는데 이는 교육용 동영상과 같이 특정 목적 및 관심사를 다루는 동영상 추천에 좋은 방법이 아니다. 최근 추천 시스템은 사용자의 시청 기록뿐만 아니라 아이템의 콘텐츠 특징을 함께 활용한다. 본 논문에서는 유튜브를 기반으로 교육용 동영상 추천을 위한 교육용 동영상의 콘텐츠 특징을 추출하고, 이를 활용하는 추천 시스템을 설계하여 웹 애플리케이션으로 구현한다. 사용자들의 만족도를 조사하여 추천 시스템의 추천 성능의 만족도 85.36%, 편의성 만족도 87.80%를 보인다.