• Title/Summary/Keyword: Isotropic Materials Properties

Search Result 140, Processing Time 0.024 seconds

Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate

  • Rabia, Benferhat;Daouadji, Tahar Hassaine;Abderezak, Rabahi
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.293-304
    • /
    • 2019
  • In this paper, a general model is developed to predict the distribution of interfacial shear and normal stresses of FG beam reinforced by porous FGM plates under mechanical loading. The beam is assumed to be isotropic with a constant Poisson's ratio and power law elastic modulus through the beam thickness. Stress distributions, depending on an inhomogeneity constant, were calculated and presented in graphicals forms. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam, and it is shown that the inhomogeneities play an important role in the distribution of interfacial stresses. The results presented in the paper can serve as a benchmark for future analyses of functionally graded beams strengthened by imperfect varying properties plates. Numerical comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters. The results of this study indicated that the imperfect functionally graded panel strengthening systems are effective in enhancing flexural behavior of the strengthened FGM beams. This research is helpful in understanding the mechanical behaviour of the interface and design of hybrid structures.

Micropatterning of Polyimide and Liquid Crystal Elastomer Bilayer for Smart Actuator (스마트 액추에이터를 위한 폴리이미드 및 액정 엘라스토머 이중층의 미세패터닝)

  • Yerin Sung;Hyun Seung Choi;Wonseong Song;Vanessa;Yuri Kim;Yeonhae Ryu;Youngjin Kim;Jaemin Im;Dae Seok Kim;Hyun Ho Choi
    • Journal of Adhesion and Interface
    • /
    • v.25 no.1
    • /
    • pp.169-274
    • /
    • 2024
  • Recent attention has been drawn to materials that undergo reversible expansion and contraction in response to external stimuli, leading to morphological changes. These materials hold potential applications in various fields including soft robotics, sensors, and artificial muscles. In this study, a novel material capable of responding to high temperatures for protection or encapsulation is proposed. To achieve this, liquid crystal elastomer (LCE) with nematic-isotropic transition properties and polyimide (PI) with high mechanical strength and thermal stability were utilized. To utilize a solution process, a dope solution was synthesized and introduced into micro-printing techniques to develop a two-dimensional pattern of LCE/PI bilayer structures with sub-millimeter widths. The honeycomb-patterned LCE/PI bilayer mesh combined the mechanical strength of PI with the high-temperature contraction behavior of LCE, and selective printing of LCE facilitated deformation in desired directions at high temperatures. Consequently, the functionality of selectively and reversibly encapsulating specific high-temperature materials was achieved. This study suggests potential applications in various actuator fields where functionalities can be implemented across different temperature ranges without the need for electrical energy input, contingent upon molecular changes in LCE.

A study on structure analysis system for short fiber reinforced plastics (단섬유강화 플라스틱 복합재료 구조해석 기법연구)

  • Youn, Jee-Young;Kim, Sang-Woo;Park, Bong-Hyun;Lee, Seong-Hoon;Kwon, Tai-Hun;Kim, Ki-Tae
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • This paper deals with anisotropic property and structural analysis for short fiber reinforced plastic composites manufactured by the injection molding process. The common approach for modeling this type of material is the consideration of the material as homogenous and isotropic. However, the common isotropy approach often results in unexpected failure. To overcome this, new structure analysis methodology was developed in order to consider fiber orientation effect using injection mold flow analysis and Halpin-Tsai equations for unidirectional composites and taking an orientation average. The numerical predictions are compared to experimental data for tensile specimen. The predicted mechanical properties agree well with experimental data for fiber orientation and weld line effect. The analysis system was also applied to an automobile part. The proposed anisotropic model predicted different mechanical properties by position of the part and different mechanical performance of the part was changed according to injection gate position.

The Study on the Improvement of Mechanical Performance due to Change in Temperature and Sputtering by $SiO_2/Ag$ Material of Bonded Dissimilar Materials with Cylindrical Shape (원통형 이종 접합 소재의 $SiO_2/Ag$스퍼터 증착과 온도 변화에 따른 기계적 특성에 관한 연구)

  • Lee, Seung-Hyun;Choi, Seong-Dae;Lee, Jung-Hyong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.138-145
    • /
    • 2012
  • The material used in this study is dielectric and ferrite. Because of the unique characteristics of the material, it is easily exposed to external shocks and pressure, which cause damage to the product. However, after being processed under high-temperature environment repeatedly, the mechanical strength of the product is greatly increased due to the change of the electrical properties. In this paper, dielectric and bonded ferrite material was tested for the material properties. The equipment for this experiment was produced and tested to allow Cylindrical and Three-dimensional geometry of the product for the vacuum deposition. For Cylindrical shape of the product, in order to obtain the equivalent film thickness, the device is constructed in a vacuum chamber which gives arbitrary revolving and rotating capability. The electrical performance of the product is obtained through this process as well. However, as mentioned above, with repeating processes under high temperature and exposure to external environment, the product is easy to be broken. This experiment has enabled us to find out a stable condition to apply the communication of the RF high frequency to each of the core elements, such as Ferrite and Dielectric which is then used for the mechanical strength of the Raw material, hetero-junction material, Hetero-junction Ag Coating material and hetero-junction Ag Coating SiO2 Coating material respectively.

Estimation of the thickness of refractory ceramics using the impact-echo method (충격반향기법을 이용한 내화물 두께 추정)

  • Lee, Seongmin;Shin, Namho;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.247-253
    • /
    • 2017
  • Generally, the vibration characteristics of refractory ceramics are identified by assuming them as isotropic materials. However, in practice, refractory ceramics exhibit anisotropic properties as they are manufactured by pressing ceramic powders along a particular direction. Therefore, in this research, the frequency responses of a refractory ceramic brick along its width, length, and height directions were acquired using finite element analysis by assuming that the ceramics had tetragonal symmetry in their material properties. The validity of the numerical analysis results was verified by comparing them with those from experimental measurements. Based on the frequency response, the thicknesses of the refractory brick along three different directions were estimated using the impact-echo technique. The maximum difference between the estimated and actual thicknesses was observed to be less than 5 %. This result confirms the effectiveness of the impact-echo technique along with anisotropic property characterization to evaluate the thickness of the refractory ceramic.

Computer simulation of the effects of anisotropic grain boundary energy on grain growth in 2-D (이방성 결정립 계면에너지의 2차원 결정립 성장에 미치는 효과에 대한 컴퓨터 모사)

  • Kim, Shin-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.178-182
    • /
    • 2012
  • The grain growth is very important because of its great influence on the various materials properties. Therefore, in this study, the effects of anisotropic grain boundary energy on grain growth in 2-D have been investigated with a large scale phase field simulation model on PC. A $2000{\times}2000$ grid system and the initial number of grains of about 73,000 were used in the computer simulation. The anisotropic ratio of grain boundary energy, ${\sigma}_{max}/{\sigma}_{min}$, has been varied from 1 to 3. As the anisotropy increased, the grain growth exponent, n, increased from 2.05 to 2.37. The grain size distribution showed a central plateau in the isotropic case, and was changed into no central plateau and the increasing population of very small grains in the anisotropic case, resulting from slowly disappearing grains. Finally, simulated microstructures were compared according to anisotropy.

Synthesis and Characterization of banana-shaped achiral molecules

  • Lee, Chong-Kwang;Lee, Chong-Kwang;Kwon, Soon-Sik;Kim, Tae-Sung;Shin, Sung-Tae;Choi, Suk;Choi, E-Joon;Kim, Sea-Yun;Kim, Jae-Hoon;Zin, Wang-Choel;Kim, Dae-Cheol;Chien, Liang-Chy
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.504-508
    • /
    • 2003
  • New banana-shaped achiral compounds, 4-chloro-1,3-phenylene bis [4-4(3-fluoro-9-alkenyloxy) phenyl-iminomethylbenzoate]s and 4-chloro-1,3-phenylene bis [4-4-(3-fluoro-10-alkanyloxy) phenyliminomethyl benzoate]s were synthesized by varying the substituent (X=H, F, or Cl); their electrooptical properties are described. The smectic phases, including a switchable chiral smectic C ($SmC^{\ast}$) phase, were characterized by differential scanning calorimetry, polarizing optical microscopy, and triangular method. The presence of vinyl end group at the terminals of linear side wings in the banana-shaped molecules induced a decrease in melting temperature. The smectic phase having the undecenyloxy group such $as-(CH_2)_9CH=CH_2$ showed ferroelectric switching, and its value of spontaneous polarization on reversal of an applied electric field was 2250 $nC/cm^2$, while the value of spontaneous polarization of the smectic phase having the decanyloxy group such as $-(CH2)_9CH_3$ was 3700 $nC/cm^2$. We could obtain the ferroelectric phase with low isotropic temperature by varying the end group at the terminals of linear side wings in the banana-shaped achiral molecules.

  • PDF

Measurement of residual stresses in injection molded short fiber composites considering anisotropy and modulus variation

  • Kim, Sang-Kyun;Lee, Seok-Won;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.107-114
    • /
    • 2002
  • Residual stress distribution in injection molded short fiber composites is determined by using the layer-removal method. Polystyrene is mixed with carbon fibers of 3% volume fraction (4.5% weight fraction) in an extruder and the tensile specimen is injection-molded. The layer-removal process, in which removing successive thin uniform layers of the material from the surface of the specimen by a milling machine, is employed and the resulting curvature is acquired by means of an image processing. The isotropic elastic analysis proposed by Treuting and Read which assumes a constant Yaung’s modulus in the thickness direction is one of the most frequently used methods to determine residual stresses. However, injection molded short fiber composites experience complex fiber orientation during molding and variation of Yaung’s modulus distribution occurs in the specimen. In this study, variation of Yaung’s modulus with respect to the thickness direction is considered for calculation of the residual stresses as proposed by White and the result is compared with that by assuming constant modulus. Residual stress distribution obtained from this study shows a typical stress profile of injection-molded products as reported in many literatures. Young’s modulus distribution is predicted by using numerical methods instead of experimental results. For the numerical analysis of injection molding process, a hybrid FEM/FDM method is used in order to predict velocity, temperature field, fiber orientation, and resulting mechanical properties of the specimen at the end of molding.

Analysis of Springback and Die Material Suitability in the UHSS Sheet Forming Process (초고강도 강판 성형 시의 스프링백 해석 및 금형 소재 적합성 검토)

  • Oh, I.S.;Yun, D.Y.;Cho, J.H.;Lee, M.G.;Kim, H.Y.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.203-210
    • /
    • 2020
  • In this study, formability and springback behavior of 1.5 GPa grade ultra-high strength steel (UHSS) sheet were predicted through the finite element simulation, and structural stability of the forming dies was verified by the coupled forming-structural analysis. Uniaxial tension and uniaxial tension-compression tests were performed to obtain experimental data for modeling the springback properties of the sheet material. The springback values predicted by simulation were compared with those from actual measurements. The results calculated from the kinematic hardening model were found to be much more accurate than those from the isotropic hardening model. Deformation of the forming die and springback of the product were calculated by the coupled forming-structural analysis. The higher the strength of the die material, the smaller the surface displacement of the die and the springback of the product. The internal stresses of the dies made of three materials, FC300, FCD550 and STD11 were compared with the yield stress of each material. The results provided a basis for determining the most suitable material for each part of the die set. As a result, simulation techniques have been established for predicting formability and springback in the UHSS sheet forming process.

Evaluation of Mechanical Properties and Low-Velocity Impact Characteristics of Balsa-Wood and Urethane-Foam Applied to Impact Limiter of Nuclear Spent Fuel Shipping Cask (사용후핵연료 수송용기 충격완충체에 적용되는 발사목과 우레탄 폼의 기계적 특성 및 저속충격특성 평가 연구)

  • Goo, Jun-Sung;Shin, Kwang-Bok;Choi, Woo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1345-1352
    • /
    • 2012
  • This paper aims to evaluate the low-velocity impact responses and mechanical properties of balsa-wood and urethane-foam core materials and their sandwich panels, which are applied as the impact limiter of a nuclear spent fuel shipping cask. For the urethane-foam core, which is isotropic, tensile, compressive, and shear mechanical tests were conducted. For the balsa-wood core, which is orthotropic and shows different material properties in different orthogonal directions, nine mechanical properties were determined. The impact test specimens for the core material and their sandwich panel were subjected to low-velocity impact loads using an instrumented testing machine at impact energy levels of 1, 3, and 5 J. The experimental results showed that both the urethane-foam and the balsa-wood core except in the growth direction (z-direction) had a similar impact response for the energy absorbing capacity, contact force, and indentation. Furthermore, it was found that the urethane-foam core was suitable as an impact limiter material owing to its resistance to fire and low cost, and the balsa-wood core could also be strongly considered as an impact limiter material for a lightweight nuclear spent fuel shipping cask.