DOI QR코드

DOI QR Code

Estimation of the thickness of refractory ceramics using the impact-echo method

충격반향기법을 이용한 내화물 두께 추정

  • Received : 2017.03.17
  • Accepted : 2017.07.31
  • Published : 2017.07.31

Abstract

Generally, the vibration characteristics of refractory ceramics are identified by assuming them as isotropic materials. However, in practice, refractory ceramics exhibit anisotropic properties as they are manufactured by pressing ceramic powders along a particular direction. Therefore, in this research, the frequency responses of a refractory ceramic brick along its width, length, and height directions were acquired using finite element analysis by assuming that the ceramics had tetragonal symmetry in their material properties. The validity of the numerical analysis results was verified by comparing them with those from experimental measurements. Based on the frequency response, the thicknesses of the refractory brick along three different directions were estimated using the impact-echo technique. The maximum difference between the estimated and actual thicknesses was observed to be less than 5 %. This result confirms the effectiveness of the impact-echo technique along with anisotropic property characterization to evaluate the thickness of the refractory ceramic.

일반적으로 내화물의 진동특성은 등방성 재료로 가정한 후 확인한다. 하지만 실제로 내화물은 특정 방향으로 가압 성형하여 제조되기 때문에 이방성 재료특성을 보인다. 따라서 본 연구에서는 내화물을 정방정계 대칭성으로 가정하고, 유한요소프로그램을 이용해 너비, 길이, 높이 방향에 대한 주파수 응답을 얻었다. 해석결과의 타당성은 실제 측정결과의 비교를 통해 검증하였다. 주파수 응답을 기반으로, 충격방향기법을 이용하여 내화벽돌의 세 방향의 두께를 추정하였다. 실험을 통해 찾은 두께와 실제 두께와의 최대 오차율은 5 % 미만으로 확인되었다. 이를 통해 내화물과 같은 이방성 재료 두께 측정 시 충격반향기법의 효용성을 확인하였다.

Keywords

References

  1. A. N. Dmitriev, Y. A. Chesnkov, K. Chen, and O. Y. Ivanov, "Monitoring the wear of the refractory lining in the blast furnace hearth," Steel in Translation 43, 8-14 (2013).
  2. S. N. Silva, F. Vernilli, S. M. Justus, O. R. Marques, A. Mazine, J. B. Baldo, E. Longo, and J. A. Varela, "Wear mechanism for blast furnace hearth refractory lining," Ironmaking & Steelmaking 32, 459-467 (2005). https://doi.org/10.1179/174328105X48160
  3. D. M. McCann and M. C. Forde, "Review of NDT methods in the assessment of concrete and masonry structures," NDT E Int. 34, 71-84 (2001). https://doi.org/10.1016/S0963-8695(00)00032-3
  4. C. Y. Wang, C. L. Chiu, K. Y. Tsai, P. K. Chen, P. C. Peng, and H. L. Wang, "Inspecting the current thickness of a refractory wall inside an operational blast furnace using the impact echo method," NDT E Int. 66, 43-51 (2014). https://doi.org/10.1016/j.ndteint.2014.04.001
  5. J. Sebastian, "Monitoring of refractory wall recession using high-temperature Impact-echo instrumentation," University of Dayton, Tech. Rep., 2004.
  6. W. L. Ying, R. MacRosty, P. Gebski, R. Pula, A. Sadri, and T. Gerritsen, "Managing furnace integrity by utilizing non-destructive testing (NDT) and monitoring techniques," Conference of Metallurgists, paper no. 8709 (2015).
  7. M. Sansalone and W. B. Streett, Impact-Echo: Nondestructive Evaluation of Concrete and Masonry (Bullbrier Press, New York, 1997), pp. 256-257.
  8. F. Schubert, H. Wiggenhauser, and R. Lausch, "On the accuracy of thickness measurements in impact-echo testing of finite concrete specimens-numerical and experimental results," Ultrasonics 42, 897-901 (2004). https://doi.org/10.1016/j.ultras.2004.01.076
  9. M. T. Ghomi, J. Mahmoudi, and M. Darabi, "Concrete plate thickness measurement using the indirect impactecho method," NDT E Int. 28, 119-144 (2013).
  10. J. S. Popovics, G. P. Centrangolo, and N. D. Jackson, "Experimental investigation of impact-echo method for concrete slab thickness measurement," J. Korean Soc. Nondestruct. Test. 26, 427-439 (2006).
  11. M. T. A. Chaudhary, "Effectiveness of impact echo testing in detecting flaws in prestressed concrete slabs," Construction and Building Materials 47, 753-759 (2013). https://doi.org/10.1016/j.conbuildmat.2013.05.021
  12. H. Azari, S. Nazarian, and D. Yuan, "Assessing sensitivity of impact echo and ultrasonic surface waves methods for nondestructive evaluation of concrete structures," Construction and Building Materials 71, 384-391 (2014). https://doi.org/10.1016/j.conbuildmat.2014.08.056
  13. D. S. Kim, W. S. Seo, and K. M. Lee, "IE-SASW method for nondestructive evaluation of concrete structure," NDT E Int. 39, 143-154 (2006). https://doi.org/10.1016/j.ndteint.2005.06.009
  14. Y. S. Cho, S. U. Hong, and M. S. Lee, "The assessment of the compressive strength and thickness of concrete structures using nondestructive testing and an artificial neural network," NDT E Int. 24, 277-288 (2009).
  15. D. G. Aggelis, T. Shiotani, and K. Kasai, "Evaluation of grouting in tunnel lining using impact-echo," Tunnelling and Underground Space Technology 23, 629-637 (2008). https://doi.org/10.1016/j.tust.2007.12.001
  16. J. S. Popovics, N. Ryden, A. Gibson, S. Alzate, I. L. Al-Qadi, and W. Xie, "New developments in NDE methods for pavements" AIP Conf. Proc. 1320-1327 (2008).
  17. K. R. Maser, T. J. Holland, R. Roberts, and J. Popovics, "NDE methods for quality assurance of new pavement thickness," Int. J. Pavement Eng. 7, 1-10 (2006). https://doi.org/10.1080/10298430500501985
  18. D. A. Sack and L. D. Olson, "Advanced NDT methods for evaluating concrete bridges and other structures," NDT E Int. 28, 349-357 (1995). https://doi.org/10.1016/0963-8695(95)00045-3
  19. S. K. U. Rehman, Z. Ibrahim, S. A. Memon, and M. Jameel, "Nondestructive test methods for concrete bridges: A review," Construction and Building Materials 107, 58-86 (2016). https://doi.org/10.1016/j.conbuildmat.2015.12.011
  20. A. N. Pyrikove, A. V. Likhodievskii, V. N. Loginov, A. E. Paren'kov, and O. V. Golubev, "Prospects for refractory blast-furnace linings," Steel in Translation 38, 132-140 (2008). https://doi.org/10.3103/S0967091208020101
  21. S. A. Podkopaev, "Carbon-based refractories for the lining of blast furnaces," Refractories and Industrial Ceramics 45, 235-238 (2004). https://doi.org/10.1023/B:REFR.0000046503.78042.f4
  22. M. Sansalone, "Impact-echo: the complete story", ACI Struct. J. 94, 777-786 (1997).
  23. N. J. Carino, "Impact-echo method: An overview," Proc. Structure Congress & Exposition, 118 (2001).
  24. M. T. Hu, Y. Lin, and C. C. Cheng, "Method for determining internal p-wave speed and thickness of concrete plates," ACI Materials J. 103, 327-335 (2006).
  25. C. Hsiao, C. C. Cheng, T. Liou, and Y. Juang, "Detecting flaws in concrete blocks using the impact-echo method," NDT E Int. 41, 98-107 (2008). https://doi.org/10.1016/j.ndteint.2007.08.008
  26. J. F. Nye, Physical Properties of Crystals (Oxford University Press, New York, 1986), pp. 250-251.
  27. V. M. Ristic, Principles of Acoustic Devices (Willey, New York, 1983), pp. 185-190.
  28. D. Zhang and Y. Sun, "Dynamics characteristics of blast furnace shell," Advanced Engineering Forum 2, 1018-1020 (2011).