• 제목/요약/키워드: Isotope labeling

검색결과 47건 처리시간 0.027초

항 단실 항체의 카르보닐탄소 유래 시그날의 귀속 (Assignment of the Carbonyl Carbon Resonances in Anti-Dansyl Antibodies)

  • 김하형;이광표
    • 약학회지
    • /
    • 제39권5호
    • /
    • pp.516-520
    • /
    • 1995
  • The anti-dansyl antibodies were specifically labeled with stable isotope by growing hybridoma cells in serum-free medium. Assignments of the observed carbonyl carbon resonances have been determined by using $^{13}C-{15}N$ double labeling method in order to assign the Leu resonances. However, when the identical dipeptide appears more than twice in the polypeptide sequences, we applied the proteolytic fragments in the fragment-specific method. Carboxypep-tidase B-treated antibody has also been used to assign the Lys-447 in C terminal amino acid. These unambiguously assigned carbonyl carbon resonances in antibodies are thought to be useful in elucidating not only the structure of antibodies but also the structure-function relationship in the antibody by $^{13}C$ neuclear magnetic resonance spectroscopy.

  • PDF

Quantitative Proteomics Towards Understanding Life and Environment

  • Choi, Jong-Soon;Chung, Keun-Yook;Woo, Sun-Hee
    • 한국환경농학회지
    • /
    • 제25권4호
    • /
    • pp.371-381
    • /
    • 2006
  • New proteomic techniques have been pioneered extensively in recent years, enabling the high-throughput and systematic analyses of cellular proteins in combination with bioinformatic tools. Furthermore, the development of such novel proteomic techniques facilitates the elucidation of the functions of proteins under stress or disease conditions, resulting in the discovery of biomarkers for responses to environmental stimuli. The ultimate objective of proteomics is targeted toward the entire proteome of life, subcellular localization biochemical activities, and the regulation thereof. Comprehensive analysis strategies of proteomics can be classified into three categories: (i) protein separation via 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification via either Edman sequencing or mass spectrometry (MS), and (iii) proteome quantitation. Currently, MS-based proteomics techniques have shifted from qualitative proteome analysis via 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, toward quantitative proteome analysis. In vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes. protein-labeling tagging with isotope-coded affinity tags, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope-labeled amino acids can be in vivo labeled into live culture cells via metabolic incorporation. MS-based proteomics techniques extend to the detection of the phosphopeptide mapping of biologically crucial proteins, which ale associated with post-translational modification. These complementary proteomic techniques contribute to our current understanding of the manner in which life responds to differing environment.

Triple isotope-[13C, 15N, 2H] labeling and NMR measurements of the inactive, reduced monomer form of Escherichia coli Hsp33

  • Lee, Yoo-Sup;Ko, Hyun-Suk;Ryu, Kyoung-Seok;Jeon, Young-Ho;Won, Hyung-Sik
    • 한국자기공명학회논문지
    • /
    • 제14권2호
    • /
    • pp.117-126
    • /
    • 2010
  • Hsp33 is a molecular chaperone achieving a holdase activity upon response to a dual stress by heat and oxidation. Despite several crystal structures available, the activation process is not clearly understood, because the structure inactive Hsp33 as its reduced, zinc-bound, monomeric form has not been solved yet. Thus, we initiated structural investigation of the reduced Hsp33 monomer by NMR. In this study, to overcome the high molecular weight (33 kDa), the protein was triply isotope-[$^{13}C$, $^{15}N$, $^2H$]-labeled and its inactive, monomeric state was ensured. 2D-[$^1H$, $^{15}N$]-TROSY and a series of triple resonance spectra could be successfully obtained on a high-field (900 MHz) NMR machine with a cryoprobe. However, under all of the different conditions tested, the number of resonances observed was significantly less than that expected from the amino acid sequence. Thus, a possible contribution of dynamic conformational exchange leading to a line broadening is suggested that might be important for activation process of Hsp33.

A simple guide to the structural study on membrane proteins in detergents using solution NMR

  • Sim, Dae-Won;Lee, Yoo-sup;Seo, Min-Duk;Won, Hyung-Sik;Kim, Ji-hun
    • 한국자기공명학회논문지
    • /
    • 제19권3호
    • /
    • pp.137-142
    • /
    • 2015
  • NMR-based structural studies on membrane proteins are appreciated quite challenging due to various reasons, generally including the narrow dispersion of NMR spectra, the severe peak broadening, and the lack of long range NOEs. In spite of the poor biophysical properties, structural studies on membrane proteins have got to go on, considering their functional importance in biological systems. In this review, we provide a simple overview of the techniques generally used in structural studies of membrane proteins by solution NMR, with experimental examples of a helical membrane protein, caveolin 3. Detergent screening is usually employed as the first step and the selection of appropriate detergent is the most important for successful approach to membrane proteins. Various tools can then be applied as specialized NMR techniques in solution that include sample deteuration, amino-acid selective isotope labeling, residual dipolar coupling, and paramagnetic relaxation enhancement.

저온에서의 싸이클로옥타논에 대한 고유동위원소 효과 (INTRINSIC NMR ISOTOPE SHIFTS OF CYCLOOCTANONE AT LOW TEMPERATURE)

  • 정미원
    • 분석과학
    • /
    • 제7권2호
    • /
    • pp.213-224
    • /
    • 1994
  • 선택적으로 중수소를 치환시킨 싸이클로옥타논의 여러 동위원소 이성질체들을 합성하였다. 고유동위원소 효과에 의해 영향을 받는 $^{13}C$ NMR 화학적 이동값들을 각 이성질체에 대해 저온에서 계통적으로 관찰하였다. 특히 싸이클로옥타논이 선호하는 안정한 형태 이성질체인 클 boat-chair 형과 연관시켜 이 효과들을 논의하였다.

  • PDF

Deuterium-labeling Toward Robust Function of Organic Molecules: Enhanced Photo-stability of Partially Deuterated 1', 3', 3'-Trimethyl-6-nitrospiro[2H-1- benzopyran-2, 2'-indoline]

  • Kawanishi, Yuji;Inoue, Kyoko;Ohta, Shin-Ichi;Miyazawa, Akira
    • Rapid Communication in Photoscience
    • /
    • 제3권4호
    • /
    • pp.64-66
    • /
    • 2014
  • Synthesis of a deuterium-labeled derivative of nitrospirobenzopyran (NSP), one of representative photochromic compounds, has been described. Four deuteriums were successfully introduced on 1-methyl and ${\alpha}$-methyne relative to spiro-carbon in the title compound with more than 95atom%D purity. Main photodegraded products of NSP were two oxindoles in acetonitrile, and additional products were formed in poly(isobutyl-methacrylate) films possibly due to restricted molecular motion in polymer matrix. Quantitative HPLC analysis revealed that partial introduction of deuterium to NSP brought a noticeable isotope effect, recognizable enhancement in photo-resistivity of NSP, i.e.,8.3% in solutions and 29% in polymeric films.

Oxidation-Induced Conformational Change of a Prokaryotic Molecular Chaperone, Hsp33, Monitored by Selective Isotope Labeling

  • Lee, Yoo-Sup;Ryu, Kyoung-Seok;Lee, Yuno;Kim, Song-Mi;Lee, Keun-Woo;Won, Hyung-Sik
    • 한국자기공명학회논문지
    • /
    • 제15권2호
    • /
    • pp.137-145
    • /
    • 2011
  • Hsp33, a prokaryotic molecular chaperone, exerts holdase activity in response to oxidative stress. In this study, the stepwise conformational change of Hsp33 upon oxidation was monitored by NMR. In order to overcome its high molecular weight (33 kDa as a monomer and 66 kDa as a dimer), spectra were simplified using a selectively [$^{15}N$]His-labeled protein. All of the eight histidines were observed in the TROSY spectrum of the reduced Hsp33. Among them, three peaks showed dramatic resonance shifts dependent on the stepwise oxidation, indicating a remarkable conformational change. The results suggest that unfolding of the linker domain is associated with dimerization, but not entire region of the linker domain is unfolded.

Comprehensive proteome analysis using quantitative proteomic technologies

  • Kamal, Abu Hena Mostafa;Choi, Jong-Soon;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Woo, Sun-Hee
    • Journal of Plant Biotechnology
    • /
    • 제37권2호
    • /
    • pp.196-204
    • /
    • 2010
  • With the completion of genome sequencing of several organisms, attention has been focused to determine the function and functional network of proteins by proteome analysis. The recent techniques of proteomics have been advanced quickly so that the high-throughput and systematic analyses of cellular proteins are enabled in combination with bioinformatics tools. Furthermore, the development of proteomic techniques helps to elucidate the functions of proteins under stress or diseased condition, resulting in the discovery of biomarkers responsible for the biological stimuli. Ultimate goal of proteomics orients toward the entire proteome of life, subcellular localization, biochemical activities, and their regulation. Comprehensive analysis strategies of proteomics can be classified as three categories: (i) protein separation by 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification by either Edman sequencing or mass spectrometry (MS), and (iii) quanitation of proteome. Currently MS-based proteomics turns shiftly from qualitative proteome analysis by 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, to quantitative proteome analysis. Some new techniques which include top-down mass spectrometry and tandem affinity purification have emerged. The in vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes, protein-labeling tagging with isotope-coded affinity tag, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope labeled amino acid can be in vivo labeled into live culture cells through metabolic incorporation. MS-based proteomics extends to detect the phosphopeptide mapping of biologically crucial protein known as one of post-translational modification. These complementary proteomic techniques contribute to not only the understanding of basic biological function but also the application to the applied sciences for industry.

NMR에 의한 anti-Ex-A IgG의 항원결합부위 해석 (Paratope Mapping of Anti-Ex-A IgG as Studied by NMR)

  • 김하형;이광표;가토 코이치;아라타 요우지
    • 약학회지
    • /
    • 제40권4호
    • /
    • pp.422-427
    • /
    • 1996
  • The anti-Ex-A IgG was specifically labeled with stable isotopes, DL-His-2,4-$d_2$, L-Phe-$d_5$, L-Trp-$d_5$, L-Tyr-2,6-$d_2$ and L-[1-$^{13}C$]Trp, by growing hybridoma cell in serum-free medium. By use of NMR spectroscopy with selectively labeled Fab fragment, we applied a paratope mapping on antigen-antibody complex. Assignments of the observed carbonyl carbon resonances have been determined by using $^{13}C$-$^{15}N$ double labeling method in order to assign the Trp resonances. Photo CIDNP was also applied to investigate the antigen-binding site(s) on the surface residues of antibody. We found that Trp 36, which is located at the $V_H$ domain, is an important residue to bind to Ex-A, however, two Tyr on the surface of anti-Ex-A IgG plays no crucial role to bind to antigen. On the basis of these results, we demonstrate that stable isotope-aided NMR strategy can be extended to molecular structural analyses of the complex of an Fab fragment and a protein antigen.

  • PDF