• Title/Summary/Keyword: Isorhamnetin-3-O-galactoside

Search Result 10, Processing Time 0.033 seconds

Isorhamnetin-3-O-galactoside Protects against CCl4-Induced Hepatic Injury in Mice

  • Kim, Dong-Wook;Cho, Hong-Ik;Kim, Kang-Min;Kim, So-Jin;Choi, Jae-Sue;Kim, Yeong-Shik;Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.406-412
    • /
    • 2012
  • This study was performed to examine the hepatoprotective effect of isorhamnetin-3-O-galactoside, a flavonoid glycoside isolated from Artemisia capillaris Thunberg (Compositae), against carbon tetrachloride ($CCl_4$)-induced hepatic injury. Mice were treated intraperitoneally with vehicle or isorhamnetin-3-O-galactoside (50, 100, and 200 mg/kg) 30 min before and 2 h after $CCl_4$ (20 ${\mu}l/kg$) injection. Serum aminotransferase activities and hepatic level of malondialdehyde were significantly higher after $CCl_4$ treatment, and these increases were attenuated by isorhamnetin-3-O-galactoside. $CCl_4$ markedly increased serum tumor necrosis factor-${\alpha}$ level, which was reduced by isorhamnetin-3-O-galactoside. The levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and heme oxygenase-1 (HO-1) protein and their mRNA expression levels were significantly increased after $CCl_4$ injection. The levels of HO-1 protein and mRNA expression levels were augmented by isorhamnetin-3-O-galactoside, while isorhamnetin-3-O-galactoside attenuated the increases in iNOS and COX-2 protein and mRNA expression levels. $CCl_4$ increased the level of phosphorylated c-Jun N-terminal kinase, extracellular signal-regulated kinase and p38, and isorhamnetin-3-O-galactoside reduced these increases. The nuclear translocation of nuclear factor kappa B (NF-${\kappa}B$), activating protein-1, and nuclear factor erythroid 2-related factor 2 (Nrf2) were significantly increased after $CCl_4$ administration. Isorhamnetin-3-O-galactoside attenuated the increases of NF-${\kappa}B$ and c-Jun nuclear translocation, while it augmented the nuclear level of Nrf2. These results suggest that isorhamnetin-3-O-galactoside ameliorates $CCl_4$-induced hepatic damage by enhancing the anti-oxidative defense system and reducing the inflammatory signaling pathways.

Flavonol Galactosides from Artemisia apiacea

  • Kim, Kyoung-Soon;Lee, Sang-Hyun;Kang, Kyoung-Hwan;Kim, Bak-Kwang
    • Natural Product Sciences
    • /
    • v.11 no.1
    • /
    • pp.10-12
    • /
    • 2005
  • Flavonol galactosides were isolated from the EtOAc fraction of Artemisia apiacea by repeated column chromatography. Their structures were elucidated as $isorhamnetin-3-O-{\beta}-D-galactoside$ (1) and $quercetin-3-O-{\beta}-D-galactoside$ (2) by chemical and spectroscopic analysis. This is the first report on the isolation of compound 2 from this plant.

Flavonoids from the Stems of Eastern Picklypear Opuntia humifusa, Cactaceae

  • Park, Si-Hyung;Kim, Hui;Rhyu, Dong-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.254-258
    • /
    • 2007
  • Five flavonoids, isorhamnetin 3-O-${\beta}$-D-galactosyl-4'-O-${\beta}$-D-glucoside (1), isorhamnetin 3,4'-di-O-${\beta}$-D-glucoside (2), isorhamnetin 3-O-${\beta}$-D-(6-O-${\alpha}$-L-rhamnosyl)glucosyl-4'-O-${\beta}$-D-glucoside (3), isorhamnetin 3-O-${\beta}$-D-(6-O-${\alpha}$-L-rhamnosyl)glucoside (4), and isorhamnetin 3-O-${\beta}$-D-(6-O-${\alpha}$-L-rhamnosyl) galactoside (5) were isolated from the stems of Opuntia humifusa (Raf.) Raf. and their structures were identified based on LC-MS and NMR data.

Heptatriacontanol and Phenolic Compounds from Halochris hispida

  • Gohar, Ahmed A.
    • Natural Product Sciences
    • /
    • v.7 no.3
    • /
    • pp.68-71
    • /
    • 2001
  • The phytochemical investigation of Halocharis hispida revealed the presence of 1-heptatriacontanol, ${\beta}-sitosterol$, ${\beta}-sitosterol-3-O-glucoside$, kaempferol, vitexin and isorhamnetin-3-O-galactoside in addition to vanillic, ferulic, isoferulic, syringic and caffeic acids. The different isolated compounds were identified by different physical, chemical, chromatographic and/or spectral methods.

  • PDF

Hybridization of Quercus aliena Blume and Q. serrata Murray in Korea - Analyses of Morphological variation and Flavonoid chemistry -

  • Park, Jin Hee;Park, Chong-Wook
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.2
    • /
    • pp.145-161
    • /
    • 2015
  • This research was conducted in order to understand the hybridization between Quercus aliena Blume and Q. serrata Murray in Korea which show wide range of morphological variations within species and interspecific variations of diverse overlapping characteristics caused by hybridization. Morphological analysis (principal components analysis; PCA) of 116 individuals representing two species and their intermediates were performed. As a result, two species were clearly distinguished in terms of morphology, and intermediate morpho-types assumed to be hybrids between the two species were mostly located in the middle of each parent species in the plot of the principal components analysis. There was a clear distinction between two species in trichome distribution pattern which is an important diagnostic character in taxonomy of genus Quercus, whereas intermediate morpho-types showed intermediate state between two species' trichome distributions. Forty-two individuals representing two species and their intermediates were examined for leaf flavonoid constituents. Twenty-three flavonoid compounds were isolated and identified: They were glycosylated derivatives of flavonols, kaempferol, quercetin, isorhamnetin and myricetin. The flavonoid constituents of Q. aliena were five glycosylated derivatives: kaempferol 3-O-galactoside, kaempferol 3-O-glucoside, quercetin 3-O-galactoside, quercetin 3-O-glucoside, and Isorhamnetin 3-O-glucoside. The flavonoid constituents of Q. serrata had 20 diverse flavonol compounds including five flavonoid compounds found in Q. aliena. It was found that there is a clear difference in flavonoid constituents of Q. aliena and Q. serrata. Flavonoid chemistry is very useful in recognizing each species and putative hybrids. The flavonoid constituents of intermediates were a mixture of the two species' constituents and they generally showed similar characteristics to morpho-types. The hybrids between Q. aliena and Q. serrata showed morphologically and chemically diverse characteristics and it is assumed that there are frequent interspecific hybridization and introgression.

Studies on the Pharmaco-Constituents of Hydrocotyle japonica (I) (Hydrocotyle japonica의 약효성분에 관한 연구(I))

  • Cho, Eui-Hwan;Kim, Il-Hyuk
    • YAKHAK HOEJI
    • /
    • v.32 no.4
    • /
    • pp.281-286
    • /
    • 1988
  • For the investigation of medicinal resources in Hydrocotyle species, the studies were conducted to evaluate the pharmaco-constituents in Hydrocotyle japonica MAKINO (Umbelliferae), which is used as folk medicine in Korea. From the methyl alcohol extract of the whole plant, $isorhamnetin-3-O-{\beta}-D-galactoside$ ($C_{22}H_{22}O_{12}{\cdot}1/3H_2O$, bright yellow needle crystal, mp $247{\sim}248^{\circ}C$, $[{\alpha}]_D^{28}^{\circ}=-52.27^{\circ}$ in pyridine), one of three flavonol substances in extrat, was isolated and identified by physicochemical properties and spectroscopic evidences (UV, IR, NMR and MS etc.,) in comparison with authentic sample. This flavonoid was appeared from Hydrocotyle japonica MAKINO through phytochemical approaches at the outset.

  • PDF

Phytochemical variation of Quercus mongolica Fisch. ex Ledeb. and Quercus serrata Murray (Fagaceae) in Mt. Jiri, Korea - Their taxonomical and ecological implications - (지리산 신갈나무와 졸참나무의 식물화학적 변이 양상 - 분류학적, 생태학적 의미 -)

  • Park, Jin Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.5
    • /
    • pp.574-587
    • /
    • 2014
  • In this study, vertical distribution patterns of Quercus mongolica Fisch. ex Ledeb. and Q. serrata Murray in Korea were recognized and possibility of introgressive hybridization and gene flow between Q. mongolica and Q. serrata in Mt. Jiri was inferred by flavonoid analyses. The most critical factor on distribution patterns was the altitude in accordance with temperature condition. A zonal distribution was recognized: Quercus mongolica zone in the upper area and Q. serrata zone in the lower area. In Central Korea, the range of vertical distribution of Q. mongolica was above alt. 100m, almost everywhere, whereas that of Q. serrata was from alt. 0 m to alt. 500(-700) m, and the species is rare above that altitude. But in Southern Korea, Q. serrata is found up to above alt. 1,000 m, whereas frequency of Q. mongolica reduces as elevation in decline and the species is rare below alt. 300 m, even though pure stands being formed on higher mountain slope. Altitudinal distribution of the two species, however, overlaps, where the two species occur together. Thirty-seven individuals of Q. mongolica and Q. serrata in Mt. Jiri and other area were examined for leaf flavonoid constituents. Twenty-three flavonoid compounds were isolated and identified; they were glycosylated derivatives of the flavonols kaempferol, quercetin, isorhamnetin, myricetin, and four compounds among the flavonoid compounds were acylated. Kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside and its acylated compounds were major constituents and present in all individuals. Quercus mongolica is distinguished from Q. serrata by the presence of quercetin 3-O-arabinosylglucoside and by high concentration of three acylated compounds, acylated kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside, and by relatively low concentration or lacking of rhamnosyl flavonol compounds. There are intraspecific variations in flavonoid profiles for Q. mongolica and Q. serrata, the flavonoid profiles for individuals of two species in hybrid zone (sympatric zone) tend to be similar to each other, qualitatively and quantitatively. These findings strongly suggest that gene exchange or gene flow occurs through the introgressive hybridization between Q. mongolica and Q. serrata in Mt. Jiri. Therefore, Quercus crispula, occupying morphologically intermediate position between Q. mongolica and Q. serrata, is suspected of being a hybrid taxon of two putative parental species.

Flavonoid Profiles of Quercus mongolica Fisch. ex Ledeb. and Q. serrata Murray (Fagaceae) in Mt. Seorak, Korea: Taxonomical and Ecological Implications (설악산 신갈나무와 졸참나무의 플라보노이드 조성과 분류학적, 생태학적 의미)

  • Park, Jin Hee
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1092-1101
    • /
    • 2014
  • In this study, the distribution patterns of Quercus mongolica and Q. serrata in Korea were investigated, and the possibility of introgressive hybridization and gene flow between Q. mongolica and Q. serrata in Mt. Seorak was inferred by flavonoid analyses. The most critical factor in the vertical and horizontal distribution patterns of Q. mongolica and Q. serrata was the temperature, in accordance with latitude and altitude. The species showed a zonal distribution, with a Q. mongolica zone in the upper area and a Q. serrata zone in the lower area. In Mt. Seorak, Central Korea, the range of the vertical distribution of Q. mongolica was generally above an altitude of 100 m, whereas that of Q. serrata was an altitude of 0-400 m (-500) and rarely above an altitude of 500 m. However, in Mt. Jiri, Southern Korea, Q. serrata was found up to an altitude of 1,000~1,200 m, whereas the frequency of Q. mongolica was reduced at lower elevations and the species was rare below an altitude of 300 m, although pure stands were found on higher mountain slopes above an altitude of 1,200 m. The altitudinal distribution of the two species overlapped, where the two species occurred together. The leaf flavonoid constituents of thirty-four individuals of Q. mongolica and Q. serrata in Mt. Seorak and Mt. Jiri, Korea were examined. Twenty-four flavonoid compounds were isolated and identified. These were glycosylated derivatives of flavonols kaempferol, quercetin, isorhamnetin, myricetin. Five compounds among the flavonoid compounds were acylated. Kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside, and its acylated compounds were major constituents and present in all individuals. Quercus mongolica is distinguished from Q. serrata by the presence of quercetin 3-O-arabinosylglucoside, a high concentration of three acylated compounds (kaempferol 3-O-glucoside, quercetin 3-O-glucoside, and quercetin 3-O-galactoside), and a relatively low concentration or lack of rhamnosyl flavonol compounds. Intraspecific variations, however, were found in the flavonoid profiles of Q. mongolica and Q. serrata, and the flavonoid profiles of individuals belonging to the two species in a hybrid zone (sympatric zone) tended to be similar, qualitatively and quantitatively. These findings strongly suggest that gene exchange or gene flow occurs through introgressive hybridization between Q. mongolica and Q. serrata in Mt. Seorak.

Identification of Flavonoids from Extracts of Opuntia ficus-indica var. saboten and Content Determination of Marker Components Using HPLC-PDA (손바닥선인장 추출물의 플라보노이드 구조 규명 및 HPLC-PDA를 이용한 지표성분의 함량 분석)

  • Park, Seungbae;Kang, Dong Hyeon;Jin, Changbae;Kim, Hyoung Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.210-219
    • /
    • 2017
  • This study aimed to establish an optimal extraction process and high-performance liquid chromatography (HPLC)-photodiode array (PDA) analytical method for determination of marker compounds, dihydrokaempferol (DHK) and 3-O-methylquercetin (3-MeQ), as a part of materials standardization for the development of health functional foods from stems of Opuntia ficus-indica var. saboten (OFS). The quantitative determination method of marker compounds was optimized by HPLC analysis, and the correlation coefficient for the calibration curve showed very good linearity. The HPLC-PDA method was applied successfully to quantification of marker compounds in OFS after validation of the method in terms of linearity, accuracy, and precision. Ethanolic extracts from stems of O. ficus-indica var. saboten (OFSEs) were evaluated by reflux extraction at 70 and $80^{\circ}C$ with 50, 70, and 80% ethanol for 3, 4, 5, and 6 h. Among OFSEs, OFS70E at $80^{\circ}C$ showed the highest contents of DHK and 3-MeQ of $26.42{\pm}0.65$ and $3.88{\pm}0.29mg/OFS100g$, respectively. Furthermore, OFSEs were determined for their antioxidant activities by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and lipid peroxidation (LPO) inhibitory activities in rat liver homogenate. OFS70E at $70^{\circ}C$ showed the most potent antioxidant activities with $IC_{50}$ values of $1.19{\pm}0.11$ and $0.89{\pm}0.09mg/mL$ in the DPPH radical scavenging and LPO inhibitory assays, respectively. To identify active components of OFS, various chromatographic separation of OFS70E led to isolation of 11 flavonoids: dihydrokaempferol, dihydroquercetin, 3-O-methylquercetin, quercetin, isorhamnetin 3-O-glucoside, isorhamnetin 3-O-galactoside, narcissin, kaempferol 7-O-glucoside, quercetin 3-O-galactoside, isorhamnetin, and kaempferol 3-O-rutinoside. The results suggest that standardization of DHK in OFSEs using HPLC-PDA analysis would be an acceptable method for the development of health functional foods.

Comparison of Flavonoid Characteristics between Blueberry (Vaccinium corymbosum) and Black Raspberry (Rubus coreanus) Cultivated in Korea using UPLC-DAD-QTOF/MS (UPLC-DAD-QTOF/MS를 이용한 국내 재배 블루베리(Vaccinium corymbosum)와 복분자(Rubus coreanus)의 플라보노이드 특성 비교)

  • Jin, Young;Kim, Heon-Woong;Lee, Min-Ki;Lee, Seon-Hye;Jang, Hwan-Hee;Hwang, Yu-Jin;Choe, Jeong-Sook;Lee, Sung-Hyun;Cha, Youn-Soo;Kim, Jung-Bon
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.87-96
    • /
    • 2017
  • BACKGROUND: The objective of this study was to identify and compare the main phenolic compounds (anthocyanins, flavonoids, phenolic acids) in blueberry and black raspberry cultivated in Korea using ultra-performance liquid chromatography diode array detection-quadrupole time-of-flight mass spectrometry (UPLC-DAD-QTOF/MS). METHODS AND RESULTS: Twenty-nine flavonoids were identified by comparison of ultraviolet and mass spectra with data in a chemical library and published data. Blueberry contained flavonols including kaempferol, quercetin, isorhamnetin, myricetin, and syringetin aglycones. Isorhamnetin 3-O-robinobioside, kaempferol 3-O-(6"-O-acetyl)glucoside, quercetin, quercetin 3-O-arabinofuranoside (avicularin), quercetin 3-O-(6''-O-malonyl) glucoside, and quercetin 3-O-robinobioside were detected for the first time in blueberry. The flavonoids in raspberry consisted of quercetin aglycone and its glycosides. The mean total flavonoid content in blueberry [143.0 mg/100 g dry weight (DW)] was 1.5-times that in raspberry (95.4 mg/100 g DW). The most abundant flavonoid in blueberry was quercetin 3-O-galactoside (hyperoside, up to 76.1 mg/100 g DW) and that in raspberry was quercetin 3-O-glucuronide (miquelianin, up to 55.5 mg/100 g DW). Miquelianin was not detected in blueberry. CONCLUSION: Flavonol glycosides were the main flavonoids in blueberry and black raspberry cultivated in Korea. The composition and contents of flavonoids differed between blueberry and black raspberry, and may be affected by the cultivar and cultivation conditions.