• 제목/요약/키워드: Isometric contraction

검색결과 404건 처리시간 0.025초

돼지 심근내 관상동맥의 고$K^+$ 및 아세틸콜린 수축에 미치는 노아드레날린과 내피세포의 작용 ` (Effect of Noradrenaline and Endothelium on the High $K^+$ or Ach-induced Contraction in the Pig Myocardial Coronary Artery)

  • 장동철;이영
    • Journal of Chest Surgery
    • /
    • 제24권7호
    • /
    • pp.637-646
    • /
    • 1991
  • Effect of noradrenaline and endothelium on the high K+ or Ach-induced contraction were investigated in the pig myocardial coronary artery. The helical strip of isolated pig myocardial coronary artery was immersed in the Tris-buffered Tyrode`s solution equilibrated with 100% O2 at 37oC and its isometric tension was measured. High K+ and Ach-induced contraction were dose-dependent. By denuding the endothelium, dose-contraction curve of K+ was not shifted significantly to the left and upward, but that of Ach was shifted significantly to same direction 25 mM K+ - and Ach-induced contraction were relaxed by norepinephrine[NE]. NE-induced relaxation was blocked by the pretreatment of propranolol, which was known as b-adrenoceptor blocker. And, phenylephrine known as a-adrenoceptor agonist, and clonidine known as a-adrenoceptor agonist increased the 25mM K+ - induced contraction respectively. Denuding of endothelium did not show any significant effects on NE-induced relaxation and contraction increased by phenylephrine and clonidine. Tyramine increased 25mM K+ - induced contraction further. The contractile response by tyramine on the 25mM K+ - induced contraction was not blocked by the pretreatment of phentolamine, but was partially blocked by the pretreatment of atropine. From the above results, it is suggested that activation of a1-and a2-adrenoceptors induce the contraction, activation of b-adrenoceptors induce the relaxation, and NE-induced relaxation is mainly due to activation of b-adrenoceptors. Also it is suggested that denudation of endothelium did not influence NE-induced relaxation, but influence Ach-induced contraction in the pig myocardial coronary artery.

  • PDF

근육의 전기자극에 의한 X선 회절 분석연구 (A Study on the X-ray Diffraction of the Muscle by the Electrical Stimulation)

  • 김덕술;송주영
    • 생명과학회지
    • /
    • 제8권4호
    • /
    • pp.373-380
    • /
    • 1998
  • A considerable change observed in X-ray diffraction during the muscle contraction was that the movement of myosin head and conformational change of contractile monecules were occurred in the muscle contraction. Time slice requires tension peak after the onset of stimulation and the height of tension peak depends on the number of twitch cycle. The intensity of I$_{11}$, I$_{10}$, 143${\AA}$ reflection is measured with 5ms time resolution and is recorded in isometric tension. The peak height of I$_{11}$ and 143${\AA}$ intensity is changed after the onset of a stimulation I$_{i}$, and the length of twitch is shortened by successive twitches in the case of stimulation TI$_{i}$. On the other hand, the peak height of I$_{11}$ and 215${\AA}$ intensity starts to decrease at the 1st twitch and remains constant at low peak hight without appreciable recovery during the contraction term. In the case of uccessive twitch stimulation, the myosin heads of muscle are once moved from their resting position and never returned to their initial position.

  • PDF

The effects of neuromuscular electrical stimulation on skeletal muscle architecture and qualitative properties in vivo

  • Lee, Jeong-Woo;Yoon, Se-Won
    • International Journal of Contents
    • /
    • 제5권4호
    • /
    • pp.35-39
    • /
    • 2009
  • The purpose of this study was to evaluate the changes in skeletal muscle architecture and qualitative properties by muscle contraction force when neuromuscular electrical stimulation (NMES) of 50% MVIC was applied. Sixteen subjects (8 male, 8 female) without neuromuscular disease volunteered to participate in the study. All subjects were divided into two subgroups: control (no electrical stimulation) group and 50% maximal voluntary isometric contraction (MVIC) group. NMES training program was performed in the calf muscle three times a week for 10 weeks. Before and after the experiments, the MVIC of ankle plantar flexor was measured by the use of dynamometer, and the ultrasonography in the gastrocnemius medialis muscle was measured. The following results were obtained; MVIC was significantly increased in the electrical stimulation groups. Pennation angle, muscle density, and white area index also considerably changed in the electrical stimulation groups. In conclusion, the NMES training of 50% MVIC, comparative low level, improved the skeletal muscle architecture and the qualitative properties as well as the muscle contraction force.

관절각도에 따른 근 피로도와 등척성 훈련 전이효과 (Muscle Fatigue according to Joint Angle and the Transfer Effect with Isometric Training)

  • 송영희;권오윤
    • 대한인간공학회지
    • /
    • 제25권4호
    • /
    • pp.93-101
    • /
    • 2006
  • This study examined whether there is a transfer effect to other joint angles and the angular specificity of muscle fatigue after 6 weeks of isometric training of the vastus medialis. Twenty subjects were randomly assigned to 30° and 90° knee flexion groups and were trained at 80% maximal voluntary isometric contraction(MVIC) three times a week for 6 weeks. The pre-and post-training values of the 80% holding time(endurance time) of MVIC, the Fatigue Index(FI), and the MVIC at 30°, 60°, and 90° were compared. After isometric training for 6 weeks, in the 30° knee flexion group, FI decreased significantly(p<0.05) only at 30°, which was the training angle; there was no change at other angles. By contrast, in the 90° knee flexion group, FI decreased significantly(p<0.05) at both the trained angle and at the other angles, indicating a transfer effect of training. MVIC did not increase significantly(p<0.05) at any trained angle in either the 30° or 90° knee flexion groups after 6 weeks of isometric training, neither did the 80% holding time of MVIC differ significantly compared with pre-training in either group. These findings suggest that training at 90° of knee flexion is more effective than training at 30° of knee flexion for obtaining a training transfer effect on muscle fatigue in the vastus medialis.

Influence of Tibial Rotation on EMG Activities of Medial and Lateral Hamstrings During Maximal Isometric Knee Flexion

  • Lim, Woo-taek
    • 한국전문물리치료학회지
    • /
    • 제25권4호
    • /
    • pp.46-52
    • /
    • 2018
  • Background: The hamstring muscles in the lower extremity are highly important for knee joint stability and can be classified into medial and lateral hamstrings according to the anatomical position, which have some different functions. To measure the strength of the individual hamstring muscles, manual muscle testing is clinically performed by dividing rotation postures into internal and external postures. However, this has no sufficient scientific background. Objects: This study aimed to test the difference that the tibial rotation would cause in the muscle activity of the medial and lateral hamstrings. Methods: The muscle activities of the biceps femoris, semitendinosus, and semimembranosus were measured in a total of three different postures (neutral position and internal and external rotations) with 3 replications. During the maximal isometric contraction, resistance was constantly provided by the string attached to the strap, not by manual resistance of the examiner. Before and after electromyography measurements, the participants underwent hamstring flexibility measurement using the active knee extension test in the supine position on the treatment table. Results: The semitendinosus had a 12.56% reduction in muscle activity in external rotation as compared with that in neutral position. The biceps femoris and semimembranosus showed reduced muscle activities in both external and internal rotations as compared with those in neutral position. Only the women showed significant decreases in the comparison between pre and post-active knee extension. Conclusion: Only the semitendinosus muscle was consistent with the anatomical speculation. However, the reduction in the muscle activity of the semitendinosus as compared with that in neutral position was only 12.56%, the clinical value of which may be difficult to justify.

건강한 성인의 경골 회전 테이핑 방법에 따른 내측사광근과 외측광근의 근활성도 비교 (A Comparison of Vastus Medialis Oblique and Vastus Lateralis Electromyography Activities According to Different Tibial Rotation Taping Methods in Healthy People)

  • 성기욱;오윤재;김선엽
    • 대한물리의학회지
    • /
    • 제13권2호
    • /
    • pp.33-41
    • /
    • 2018
  • PURPOSE: Femur and tibia alignment in the knee joint is important to the biomechanics of lower limb movement. The purpose of this study was to compare vastus medialis oblique (VMO) and vastus lateralis electromyographic muscle activities according to tibial rotation taping methods. METHODS: Twenty-nine healthy subjects (13 males and 16 females) in the 20s, without knee joint-related diseases or disorders, participated in our study. After identifying each subject's dominant foot, the maximal voluntary isometric contraction (MVIC) was determined using a manual muscle tester. The activity of each target muscle was measured at 50% MVIC in isometric muscle contraction and at a $30^{\circ}$ knee flexion position before and after applying internal and external rotation taping by the Mulligan concept and in the neutral position. Non-elastic tape was used to stabilize the tibia rotation position. RESULTS: In the males, VMO muscle activity was significantly increased in the tibia internal rotation position ($47.2{\pm}14.6$, $mean{\pm}SD$) than in the neutral position ($39.3{\pm}14.9$) (p<.05). CONCLUSION: The results of this study indicate that when applying tibia internal rotation taping in healthy males, VMO muscle activity significantly increases during isometric extension of the knee. Therefore, this study provides a basis for selecting the appropriate taping method, in consideration of the available treatments in clinical practice for patients with knee problems.

등척성 무릎 토크 발생 시 사전활성화 유형의 차이가 최대 자발적 토크 생성에 미치는 영향 (Effect of Muscle Pre-activation Properties on the Magnitude of Joint Torque during Voluntary Isometric Knee Extension)

  • Kim, Jong-Ah;Shin, Narae;Lee, Sungjune;Xu, Dayuan;Park, Jaebum
    • 한국운동역학회지
    • /
    • 제31권2호
    • /
    • pp.140-147
    • /
    • 2021
  • Objective: The purpose of this study is to identify the mechanism of changes in maximum voluntary torque with the magnitude and duration of pre-activation torque during voluntary isometric knee extension. Method: 11 male subjects (age: 25.91±2.43 yrs., height: 173.12±3.51 cm, weight: 76.45±7.74 kg) participated in this study. The subjects were required to produce maximal voluntary isometric torque with a particular pre-activation torque condition. The properties of pre-activation torque consisted of the combinations of 1) three levels of magnitude, e.g., 32 Nm, 64 Nm, 96 Nm, and 2) two levels of duration, e.g., 1 sec, and 3 sec; thus, a total of six conditions were given to the subjects. The force and EMG data were measured using the force transducers and wireless EMG sensor, respectively. Results: The results showed that the maximum voluntary torque increased the most with relatively large and fast (96 Nm, 1 sec) pre-activation condition. Similarly, with relatively large and fast (96 Nm, 1 sec) preactivation, it was found that the integrated EMG (iEMG) of the agonist muscles increased, while no significant changes in the co-contraction of the antagonist muscles for the knee extension. Also, the effect of pre-activation conditions on the rate of torque development was not statistically significant. Conclusion: The current findings suggest that relatively larger in magnitude and shorter in duration as the properties of pre-activation lead to a larger magnitude of maximal voluntary torque, possibly due to the increased activity of the agonist muscles during knee extension.

The Acute Effect of Trimetazidine on the High Frequency Fatigue in the Isolated Rat Diaphragm Muscle

  • Emre, Mustafa;Karayaylali, Lbrahim;San, Mustafa;Demirkazik, Ayse;Kavak, Servet
    • Archives of Pharmacal Research
    • /
    • 제27권6호
    • /
    • pp.646-652
    • /
    • 2004
  • The objective of this study was to determine the acute effect of trimetazidine (TMZ) on the pre-fatigue, fatigue and post-fatigue contractile characteristics and tension-frequency relationships of isolated rat diaphragm muscle. Muscle strips were taken from the ventral-costal aspects of the diaphragm muscle of rats killed by decapitation. The muscle strips were suspended in organ baths containing Krebs solution, with a gas mixture of 95% $O_2$ and 5% $CO_2$ at $37^{\circ}C$ and pH 7.35-7.45. After determining the thermoregulation and optimum muscle length the muscles were subjected to direct supramaximal stimulation with 0.05 Hz frequency square pulses for periods of 0.5 msec to obtain control values. After adding $5{\times}10^{-6}{\;}and{\;}5{\times}10^{-5}$ M trimetazidine solution to the respective bath media, the contractile parameters of the muscles were recorded. The contractile parameters were also recorded for both the trimetazidine and tri-metazidine-free media after application of the high frequency fatigue protocols. Later, the tension-frequency relationship was determined by applying stimulating pulses of 10, 20, 50 and 100 Hz to the muscle strips. Whilst the twitch tension obtained from the $5{\times}10^{-6}{\;}and{\;}5{\times}10^{-5}$ M trimetazidine media showed numerical increases compared to that of the controls, these were not statistically significant (p>0.05). The contraction time exhibited a dose dependent increase (p<0.001), whilst the contraction and relaxation rates did not differ significantly. The isometric contraction forces obtained with the different stimulating frequencies showed a significant increase in the tetanic contraction only at 100 Hz (p<0.05). A comparison of the pre- and post-fatigue twitch tensions in the trimetazidine media showed the post- fatigue twitch tensions to be significantly higher than those of the pre-fatigue contraction forces (p<0.05). In the $5{\times}10^{-6}{\;}and{\;}5{\times}10^{-5}$ M trimetazidine media the increases in the post-fatigue contraction force were 22 and 30%, respectively. These results demonstrated that in isolated rat diaphragm muscle, TMZ significantly limited the mechanical performance decrease during fatigue. It is our opinion that trimetazidine contributed to the observed fatigue tolerance by eliminating the factors of fatigue, due to preservation of intracellular calcium homeostasis, provision of the ATP energy levels needed by ATPase dependent pumps and especially by keeping the intracellular pH within cer-tain limits.

Vasorelaxing Effect of Hypoxia via Rho-kinase Inhibition on the Agonist-specific Vasoconstriction

  • Je, Hyun-Dong;Shin, Chang-Yell
    • Biomolecules & Therapeutics
    • /
    • 제16권3호
    • /
    • pp.249-254
    • /
    • 2008
  • The present study was undertaken to determine whether hypoxia influences on the agonist-induced vascular smooth muscle contraction and, if so, to investigate the related mechanism. The measurement of isometric contractions using a computerized data acquisition system was combined with molecular experiments. Hypoxia significantly inhibited fluoride-induced contraction regardless of endothelial function, but there was no relaxation on thromboxane $A_2$ mimetic U-46619-induced contraction suggesting that other pathway such as $Ca^{2+}$ entry or thin filament regulation was not affected. In addition, hypoxia significantly decreased fluoride-induced increase of phospho-myosin-targeting subunit of myosin light chain phosphatase (pMYPT1). Interestingly, hypoxia didn't inhibit significantly phenylephrine-induced contraction suggesting that myosin light chain kinase (MLCK) activity or thin filament regulation is less important on the hypoxia-induced vasorelaxation in the denuded muscle than Rho-kinase activity. In conclusion, this study provides the evidence and possible related mechanism concerning the vasodilation effect of hypoxia on the agonist-specific contraction in rat aortic rings regardless of endothelial function.

Role of Tyrosine Kinases in Vascular Contraction in Deoxycorticosterone Acetate-Salt Hypertensive Rats

  • Yeum, Cheol-Ho;Jun, Jae-Yeoul;Choi, Hyo-Sub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권5호
    • /
    • pp.547-553
    • /
    • 1997
  • It has been known that activation of tyrosine kinases is involved in signal transduction. Role of the tyrosine kinase in vascular smooth muscle contraction was examined in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Male Sprague-Dawley rats underwent uninephrectomy, one week after which they were subcutaneously implanted with DOCA (200 mg/kg) and supplied with 1% NaCl and 0.2% KCl drinking water for $4{\sim}6$ weeks. Control rats were treated the same except for that no DOCA was implanted. Helical strips of carotid arteries were mounted in organ baths for measurement of isometric force development. Genistein was used as a tyrosine kinase inhibitor. Concentration-response curves to 5-hydroxytryptamine (5-HT) shifted to the right by genistein in both DOCA-salt hypertensive and control rats. Although the sensitivity to genistein was similar between the two groups, the maximum force generation by 5-HT was less inhibited by genistein in arteries from DOCA-salt hypertensive rats than in those from controls. Genistein-induced relaxations were attenuated in arteries from DOCA-salt rats. Genistein affected the contraction to phorbol 12, 13-dibutyrate (PDBu) neither in DOCA-salt nor in control arteries. These observations suggest that tyrosine kinase is involved in 5-HT-induced vascular contraction, of which role is reduced in DOCA-salt hypertension.

  • PDF