• Title/Summary/Keyword: Isolation property

Search Result 143, Processing Time 0.022 seconds

Investigations on a vertical isolation system with quasi-zero stiffness property

  • Zhou, Ying;Chen, Peng
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.543-557
    • /
    • 2020
  • This paper presents a series of experimental and numerical investigations on a vertical isolation system with quasi-zero stiffness (QZS) property. The isolation system comprises a linear helical spring and disk spring. The disk spring is designed to provide variable stiffness to the system. Orthogonal static tests with different design parameters are conducted to verify the mathematical and mechanical models of the isolation system. The deviations between theoretical and test results influenced by the design parameters are summarized. Then, the dynamic tests for the systems with different under-load degrees are performed, including the fast sweeping tests, harmonic excitation tests, and half-sine impact tests. The displacement transmissibility, vibration reduction rate, and free vibration response are calculated. Based on the test results, the variation of the transmission rule is evaluated and the damping magnitudes and types are identified. In addition, the relevant numerical time history responses are calculated considering the nonlinear behavior of the system. The results indicate that the QZS isolation system has a satisfactory isolation effect, while a higher damping level can potentially promote the isolation performance in the low-frequency range. It is also proved that the numerical calculation method accurately predicts the transmission character of the isolation system.

EFFECTS OF MECHANICAL PROPERTY VARIABILITY IN LEAD RUBBER BEARINGS ON THE RESPONSE OF SEISMIC ISOLATION SYSTEM FOR DIFFERENT GROUND MOTIONS

  • Choun, Young-sun;Park, Junhee;Choi, In-Kil
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.605-618
    • /
    • 2014
  • The effects of variability of the mechanical properties of lead rubber bearings on the response of a seismic isolation system are investigated. Material variability in manufacturing, aging, and operation temperature is assumed, and two variation models of an isolation system are considered. To evaluate the effect of ground motion characteristics on the response, 27 earthquake record sets with different peak A/V ratios were selected, and three components of ground motions were used for a seismic response analysis. The response in an isolation system and a superstructure increases significantly for ground motions with low A/V ratios. The variation in the mechanical properties of isolators results in a significant influence on the shear strains of the isolators and the acceleration response of the superstructure. The variation provisions in the ASCE-4 are reasonable, but more strict variation limits should be given to isolation systems subjected to ground motions having low A/V ratios. For application of seismic isolation systems to safety-related nuclear structures, the variation in the material and mechanical properties of the isolation system should be properly controlled during the manufacturing and aging processes. In addition, special consideration should be given to minimize the accidental torsion caused by the dissimilarity in the stiffness variations of the isolators.

A novel prismatic-shaped isolation platform with tunable negative stiffness and enhanced quasi-zero stiffness effect

  • Jing Bian;Xuhong Zhou;Ke Ke;Michael C.H. Yam;Yuhang Wang;Zi Gu;Miaojun Sun
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.213-227
    • /
    • 2023
  • A passive prismatic-shaped isolation platform (PIP) is proposed to realize enhanced quasi-zero stiffness (QZS) effect. The design concept uses a horizontal spring to produce a tunable negative stiffness and installs oblique springs inside the cells of the prismatic structure to provide a tunable positive stiffness. Therefore, the QZS effect can be achieved by combining the negative stiffness and the positive stiffness. To this aim, firstly, the mathematical modeling and the static analysis are conducted to demonstrate this idea and provide the design basis. Further, with the parametric study and the optimal design of the PIP, the enhanced QZS effect is achieved with widened QZS range and stable property. Moreover, the dynamic analysis is conducted to investigate the vibration isolation performance of the proposed PIP. The analysis results show that the widened QZS property can be achieved with the optimal designed structural parameters, and the proposed PIP has an excellent vibration isolation performance in the ultra-low frequency due to the enlarged QZS range. Compared with the traditional QZS isolator, the PIP shows better performance with a broader isolation frequency range and stable property under the large excitation amplitude.

An Analysis of Seismic Response of High - Rise Building with Mid-Story Isolation System According to Change of Characteristics of the Seismic Isolation Device (중간층 면진시스템이 적용된 고층건물의 면진장치 특성변화에 따른 지진응답분석)

  • Kang, Joo-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.149-156
    • /
    • 2019
  • In this study, dynamic responses of high - rise buildings were analyzed through the change of horizontal stiffness and yield strength among characteristics of seismic isolation system by applying middle - layer seismic isolation system to high - rise buildings of 120m height. As a result in order to prevent the displacement of the isolation layer and to control the maximum torsion angle, it is possible to appropriately control by increasing or decreasing the horizontal stiffness and the yield strength. However, depending on the maximum torsional angle and the hysteretic behavior of the seismic isolation system, excessive yield strength and horizontal stiffness increase may induce the elastic behavior of the structure and amplify the response. Therefore, it is considered that it is necessary to select the property value of the appropriate isolation device.

A High Isolation 4 by 4 MIMO Antenna for LTE Mobile Phones using Coupling Elements

  • Lee, Won-Woo;Yang, Hyung-kyu;Jang, Beakcheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5745-5758
    • /
    • 2017
  • In this paper, we develop a simple but very effective 4 by 4 Multiple-Input Multiple-Output (MIMO) antenna system for mobile phones consisting of different types of antennas to achieve low correlation property at the frequency ranges of 1710 to 2170 MHz, which covers wide LTE service bands, from band 1 to band 4. The proposed antenna system consists of two pair of antennas. Each pair consists of a planar inverted-F antenna (PIFA) and a coupling antenna which has the property of the loop. The use of two different antenna types of IFA and a coupling achieves high isolation. Proposed antenna system occupies relatively small area and positions at the four corners of a printed circuit board. The gap between the two antennas is 4 mm, in order to realize the good isolation performance. To evaluate the performance of our proposed antenna system, we perform various experiments. The proposed antenna shows a wide operating bandwidth greater than 460 MHz with isolation between the feeding ports higher than 17.5-dB. It also shows that the proposed antenna has low Envelop Correlation Coefficient (ECC) values smaller than 0.08 over the all desired frequency tuning ranges.

Thermal Property of the Roof Green Unit System Using Artificial Lightweight Soil Recycled with Bottom Ash (바텀애시 재활용 인공토양 적용 옥상녹화 유니트 시스템의 열특성)

  • Yoo, Jong-Su;Lee, Jong-Chan;Oh, Chang-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • In this study, the surface temperature of the roof green system using ALSRBA(Artificial Lightweight Soil Recycled with Bottom Ash) was measured in each season and the thermal property of the ALSRBA was investigated. As a result, it was certified that ALSBRA has superior thermal property than the usual artificial soil. In addition, The daily temperature range in each season was measured to investigate the thermal isolation property of EUS(Existing Unit System) and DUS(Developed Unit System). The result showed that the thermal isolation effect of EUS was lower than that of SPSS(Site-Place-Soil System), but thermal isolation effect of DUS was similar to that of SPSS because DUS has continuous ALSBRA layer by removing unit barrier.

Dynamic Property Evaluation of Control Equipment using Lead Rubber Bearing (납-고무베어링을 적용한 제어장비의 동적 특성평가)

  • 이경진;김갑순;서용표
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.341-348
    • /
    • 2002
  • In these days, The base isolation system is often used to improve the seismic capacity of the structures instead of conventional techniques of strengthening the structural members. The purpose of this study is to evaluate dynamic property evaluation of control equipment using lead Lead Rubber Bearing. In this study, a base isolation test of seismic monitoring control cabinet with LRB(lead rubber bearing) was performed. The cabinet will be installed on access floor in MCR(main control room) of nuclear power plant. Details and dynamic characteristics of the access floor were considered in the construction of testing specimen. N-S component of El Centre earthquake was used as seismic input motion. Acceleration response spectrums in the top of cabinets showed that the first mode frequency of cabinet with LRB(lead rubber bearing) was shifted to 7.5 Hz in compared with 18Hz of cabinet without LRB and the maximum peak acceleration was reduced in a degree of22 percent from 2.35 g to 1.84 g

  • PDF

A Study on the Property of the Floor Impact Isolation Material in Apartment House (공동주택 바닥충격음 완충재료의 물성 권장안)

  • 정갑철;양관섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.59-64
    • /
    • 2001
  • Recently, among those general contractors and construction material production companies in korea, this concept is lively obtained to reduce the floor impact sound. This attempt is continuously tried for developing the floor impact isolation material. However the assesment of the isolation performance is often ignored and even there seems no differences in comparison with the general the isolation performance of the floor impact. This is often occurred for their only respect with the material of the floor impact isolation performance. Therefore, this study analysed the expected problems for site application of currently applied the isolation material and its capacity which as the floor impact reducing material, and presented several major assesment items and checklist which should be inspected in advance of their development or site application.

  • PDF

Study on the Evaluation Method of Electrical Isolation Property for Hydrogen Fuel Cell Vehicle (수소연료전지자동차의 절연성능 평가방법에 관한 고찰)

  • Lee, Ki-Yeon;Kim, Dong-Ook;Kim, Hyang-Kon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.810-818
    • /
    • 2011
  • This paper analyzed the suitability about the isolation performance criteria which was based on human impedance and effect of current in IEC 60479-1 on the safety of human being was examined. The method of evaluation by megger and DC voltmeter was analyzed. The differences of isolation performance according to design of high-voltage system were analyzed. The factors which affect the insulation performance were analyzed for HFCV, EV, HEV, etc. through analysis of the isolation performance evaluation method. Finally, design for improved isolation performance was proposed.

An Experimental Study for the Shear Property and the Temperature Dependency of Seismic Isolation Bearings (지진격리받침의 전단특성 및 온도의존성에 대한 실험적 연구)

  • Cho, Chang-Beck;Kwahk, Im-Jong;Kim, Young-Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.67-77
    • /
    • 2008
  • Seismic isolation has been studied continuously as a solution of the seismic engineering to reduce the sectional forces and the damages of structures caused by earthquakes. To certify reliable design and installation of the seismic isolation systems, seismic isolation bearings should be fabricated under well planned quality control process, and proper evaluation tests for their seismic performance should be followed. In this study, shear property evaluation tests for the lead rubber bearings(LRB) and the rubber bearings(RB) were implemented and the temperature dependency tests were also implemented to evaluate the changes of shear properties according to the changes of temperature. After evaluation tests, the measured shear properties were compared to their design values and their deviation was analyzed comparing with the allowable error ranges specified in Highway Bridge Design Specifications. These results showed that a considerable number of isolation bearings have so large deviations from their design values that their error ranges were over or very close to the allowable ranges. And the test results for temperature dependency showed that the shear properties of isolation bearings would be changed in great degree by the change of temperature during their service period. If these two types of changes in their shear properties are superposed, it would possible that the changes of shear properties from their original design values are over than 50%.