• Title/Summary/Keyword: Isolated perfused rat heart

Search Result 62, Processing Time 0.021 seconds

Conversion of Myocardial Xanthine Oxidase in Ischemic Heart of Rat (허혈심근 Xanthine Oxidase 의 전환에 관한 연구)

  • 박창권
    • Journal of Chest Surgery
    • /
    • v.21 no.5
    • /
    • pp.803-815
    • /
    • 1988
  • The present experiments were performed to confirm the hypothesis that xanthine oxidase[XOD], as a source and mechanism of oxygen radical production, plays an important role in the genesis of the reperfusion injury of ischemic myocardium. The experimental ischemic-reperfusion injury was induced in isolated, Langendorff preparations of rat hearts by 60 min. Of global ischemia with aortic clamping followed by 20 min. of reperfusion with oxygenated Krebs-Henseleit solution[pH 7.4, 37*C]. The results were as follows: 1. The releases of creatine phosphokinase and a lipid peroxidation product, malondialdehyde[MDA] into the coronary effluent were abruptly increased upon reperfusion of ischemic hearts. The increases of the enzyme and MDA were suppressed significantly in the hearts removed from rats pretreated with allopurinol, a specific XOD inhibitor[20mg/kg, oral, 24 hrs and 2 hrs before study]. This effect of allopurinol was comparable to that of oxygen radical scavengers, superoxide dismutase[5, 000U] and catalase[12, 500 U]. 2. The increased SOD-inhibitable reduction of ferricytochrome C, which was infused to the hearts starting with reperfusion, was significantly suppressed in allopurinol pretreated hearts. 3. Activities of myocardial XOD were compared in the normal control hearts and the ischemic ones. Total enzyme activities were not different in both hearts. However, comparing with the control, the ischemic ones showed higher activity in 0-form and lower activities in D-form and D/O-form. 4. In the ischemic hearts, phenylmethylsulfonyl fluoride, a serine protease inhibitor, prevented significantly the increase of 0-form and the decreases of D and D/O-form, while thiol reagents did not affect the changes of the enzyme. 5. The increase of 0-form and the decreases of D and D/0-form were not significant in both calcium-free perfused and pimozide, a calmodulin inhibitor, treated ischemic hearts. 6. The SOD-inhibitable reduction of ferricytochrome C were suppressed by PMSF and pimozide treatment as well as by calcium-free perfusion. It is suggested from these results that in the ischemic rat myocardium, xanthine oxidase is converted to oxygen radical producing 0-form by calcium, calmodulin-dependent proteolysis and plays a contributing role in the genesis of ischemic-reperfusion injury by producing oxygen free radicals.

  • PDF

Effect of Diltiazem Cardioplegia on the Myocardial Protection and Functional Recovery of the Isolated Perfused Rat Heart (적출된 작업성 쥐심장에서 Diltiazem 심정지액이 심근보호 및 심근기능 회복에 미치는 영향)

  • 최종범
    • Journal of Chest Surgery
    • /
    • v.21 no.6
    • /
    • pp.970-978
    • /
    • 1988
  • There is tendency of increasing number and decreasing age of patients who are indicated for Rastelli operation for their cyanotic congenital heart disease. So there is the need to find the criterion which saves the patients from early postoperative hemodynamic disturbances. We reviewed the 26 patients who had been performed Rastelli operation at Seoul national University Hospital from January 1981 to June 1988. mean age of the patients was 7.8*3.4 years[range 2.5-15years], mean body surface area[BSA] 0.79*0.25m2[range 0.49-1.51m2] and mean hematocrit 57.95*12%[range 48-80%]. We divided these patients into survived group and died group before postoperative 72 hours, and analyzed preoperative arterial oxygen saturation[SaO2], the ratio of diameter of right pulmonary artery to ascending aorta[RPA/AA], the ratio of both right and left pulmonary artery diameter to descending thoracic aorta[RPA+LPA/DTA], pulmonary artery index[PA index], cardiopulmonary bypass time, aorta cross-clamping time, postoperative perfusion state and total amount of dopamine infused postoperatively. The results showed that RPA+LPA/DTA and PA index were statistically significant factors to influence early postoperative cardiac death rate[P< 0.05]. Especially there were good linear correlations between PA index[X] and peripheral perfusion index[Y][Y= - 1.15+0.02 X, r=0.86, P<0.01]and between PA index[X] and total amount of dopamine infused before postoperative 72 hours[mg/kg, Y][Y=61.94 - 0.15 X, r=-0.80, P < 0.01]. Also there were tendencies that the higher RPA+LPA/DTA[Y], the better peripheral perfusion [X] and the lower need of dopamine[X], but no statistical significance.[Y=0.78+1.60 X, r =0. 49, P >0.05] And the discriminate analysis showed that patients with PA index over 221 mm2/BSA could undergo correction with 25 per cent of error rate. In conclusion, early postoperative hemodynamic states could be predicted by preoperatively measured PA index, and which can be used as a criterion for Rastelli operation performed on cyanotic congenital heart disease.

  • PDF

Superiority of Modifiled University of Wiscinsin Solution in the Prolonged Preservation of Isolated Rat Heart (적출 쥐 심장의 장시간 보존에 있어서 University of Wisconsin 수정 용액의 우수성)

  • Lee, Jae-Seong;Kim, Song-Myeong;Kim, Gyu-Tae
    • Journal of Chest Surgery
    • /
    • v.26 no.6
    • /
    • pp.427-440
    • /
    • 1993
  • The paucity of donor hearts for transplantation can be remedied by distant heart procurement. Prolonging donor heart preservation is essential for successful clinical cardiac transplantation. Thirty-two isolated rat hearts were perfused with Krebs-Henseleit buffer solution for 15 minutes, arrested and preserved at 4 oC for 4 hours, and then reperfused for 25 minutes. The following three groups were prepared and hemodynamic changes, creatine kinase-MB isoenzyme levels and ultrastructural changes of the myocardium were analysed before and after cardiac arrest. ; Group I : the heart was arrested with the cardioplegic solution [Plegisol, potassium : 16 mM, sodium : 120 mM] and then stored in a solution with ionic compositions of the extracellular fluid [Hartman, potassium : 4 mM, sodium : 130 mM] ; Group II : the heart was arrested with the cardioplegic solution and stored in a solution with ionic compositions of the intracellular fluid [Modified Euro-Collins, potassium : 108 mM, sodium : 10 mM] ; Group III : the heart was arrested with the cardioplegic solution containing adenosine 20 uM, and then stored in a solution with ionic compositions of the intracellular fluid [Modified University of Wisconsin solution, potassium : 119 mM, sodium: 23 mM]. Left ventricular developed pressure at 20 minutes of the reperfusion was significantly higher in group III [64.3 $\pm$ 3.12 mmHg, p<0.01] and group II [58.3 $\pm$ 1.55 mmHg, p<0.05] as compared with group I [51.4$\pm$ 2.78 mmHg]. The time to induce cardiac arrest after infusion of cardioplegic solution with adenosine 20 uM [5.3 $\pm$ 0.30 second, p<0.005] was significantly shorter than without adenosine [10.6$\pm$ 0.55 second]. Coronary flow at 20 minutes of the reperfusion was augmented significantly in group III [9.6$\pm$ 0.50 ml/min, p<0.05, p<0.05] as compared with group I [8.0 $\pm$ 0.41 ml/min] and group II [8.1$\pm$ 0.51 ml/min]. Percentage recovery of left ventricular developed pressure at 20 minutes of the reperfusion was significantly higher in group III [94.6$\pm$ 2.51 %, p<0.005] as compared with group II and in group II [83.1 $\pm$ 1.22 %, p<0.005] as compared with group I [69.9 $\pm$ 1.73 %], and also percentage recovery of coronary flow at 20 minutes of the reperfusion was significantly higher in group III [82.3 $\pm$ 3.86 %, p<0.05] as compared with group II [71.4 $\pm$ 3.46 %] but there was no significant difference between group I and group II. Measured level of creatine kinase-MB isoenzyme at 15 minutes of the reperfusion was significantly lower in group III [1.23 $\pm$ 0.16 ng/ml, p<0.025] and group II [1.42$\pm$ 0.10 ng/ml, p<0.05] as compared with group I [1.79 0.14 ng/ml]. In the semiquantitative evaluation of the ultrastructural changes of the myocardium, mitochondrial score was lower in group III [0.7 $\pm$ 0.21] than in group I [3.1$\pm$ 0.28] and group II [1.7 $\pm$ 0.19], and also the other structural score was lower in group III [2.7$\pm$ 0.99] than in group I [7.9 $\pm$ 0.89] and group II [5.0 $\pm$ 1.22]. In conclusion, the solution with ionic compositions of the intracellular fluid is appropriate for prolonged cardiac preservation, and it appears to be better preserving method for distant procurement when the donor heart is rapidly arrested with cardioplegic solution containing adenosine 20 uM, and then stored with Modified University of Wisconsin solution.

  • PDF

Peroxisome proliferator-activated receptor γ is essential for secretion of ANP induced by prostaglandin D2 in the beating rat atrium

  • Zhang, Ying;Li, Xiang;Liu, Li-Ping;Hong, Lan;Liu, Xia;Zhang, Bo;Wu, Cheng-Zhe;Cui, Xun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.293-300
    • /
    • 2017
  • Prostaglandin $D_2$ ($PGD_2$) may act against myocardial ischemia-reperfusion (I/R) injury and play an anti-inflammatory role in the heart. Although the effect of $PGD_2$ in regulation of ANP secretion of the atrium was reported, the mechanisms involved are not clearly identified. The aim of the present study was to investigate whether $PGD_2$ can regulate ANP secretion in the isolated perfused beating rat atrium, and its underlying mechanisms. $PGD_2$ (0.1 to $10{\mu}M$) significantly increased atrial ANP secretion concomitantly with positive inotropy in a dose-dependent manner. Effects of $PGD_2$ on atrial ANP secretion and mechanical dynamics were abolished by AH-6809 ($1.0{\mu}M$) and AL-8810 ($1.0{\mu}M$), $PGD_2$ and prostaglandin $F2{\alpha}$ ($PGF2{\alpha}$) receptor antagonists, respectively. Moreover, $PGD_2$ clearly upregulated atrial peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and the $PGD_2$ metabolite 15-deoxy-${\Delta}12$, 14-$PGJ_2$ (15d-$PGJ_2$, $0.1{\mu}M$) dramatically increased atrial ANP secretion. Increased ANP secretions induced by $PGD_2$ and 15d-$PGJ_2$ were completely blocked by the $PPAR{\gamma}$ antagonist GW9662 ($0.1{\mu}M$). PD98059 ($10.0{\mu}M$) and LY294002 ($1.0{\mu}M$), antagonists of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling, respectively, significantly attenuated the increase of atrial ANP secretion by $PGD_2$. These results indicated that $PGD_2$ stimulated atrial ANP secretion and promoted positive inotropy by activating $PPAR{\gamma}$ in beating rat atria. MAPK/ERK and PI3K/Akt signaling pathways were each partially involved in regulating $PGD_2$-induced atrial ANP secretion.

Gypenoside XVII protects against myocardial ischemia and reperfusion injury by inhibiting ER stress-induced mitochondrial injury

  • Yu, Yingli;Wang, Min;Chen, Rongchang;Sun, Xiao;Sun, Guibo;Sun, Xiaobo
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.642-653
    • /
    • 2021
  • Background: Effective strategies are dramatically needed to prevent and improve the recovery from myocardial ischemia and reperfusion (I/R) injury. Direct interactions between the mitochondria and endoplasmic reticulum (ER) during heart diseases have been recently investigated. This study was designed to explore the cardioprotective effects of gypenoside XVII (GP-17) against I/R injury. The roles of ER stress, mitochondrial injury, and their crosstalk within I/R injury and in GP-17einduced cardioprotection are also explored. Methods: Cardiac contractility function was recorded in Langendorff-perfused rat hearts. The effects of GP-17 on mitochondrial function including mitochondrial permeability transition pore opening, reactive oxygen species production, and respiratory function were determined using fluorescence detection kits on mitochondria isolated from the rat hearts. H9c2 cardiomyocytes were used to explore the effects of GP-17 on hypoxia/reoxygenation. Results: We found that GP-17 inhibits myocardial apoptosis, reduces cardiac dysfunction, and improves contractile recovery in rat hearts. Our results also demonstrate that apoptosis induced by I/R is predominantly mediated by ER stress and associated with mitochondrial injury. Moreover, the cardioprotective effects of GP-17 are controlled by the PI3K/AKT and P38 signaling pathways. Conclusion: GP-17 inhibits I/R-induced mitochondrial injury by delaying the onset of ER stress through the PI3K/AKT and P38 signaling pathways.

The Experimental Study for Myocardial Preservation Effect of Ischemic Preconditioning (허혈성 전조건화 유발이 심근보호에 미치는 영향에 관한 실험적 연구)

  • 이종국;박일환;이상헌
    • Journal of Chest Surgery
    • /
    • v.37 no.2
    • /
    • pp.119-130
    • /
    • 2004
  • Decrease in cardiac function after open heart surgery is due to an ischemia induced myocardial damage during surgery, and ischemic preconditioning, a condition in which the myocardial damage does not accumulate after repeated episodes of ischemia but protects itself from damage after prolonged ischemia due to myocytes tolerating the ischemia, is known to diminish myocardial damage, which also helps the recovery of myocardium after reperfusion, and decreases incidences of arrythmia. Our study is performed to display the ischemic preconditioning and show the myocardial protective effect by applying cardioplegic solution to the heart removed from rat. Material and Method: Sprague-Dawley male rats were used, They were fixed on a modified isolated working heart model after cannulation. The reperfusion process was according to non-working and working heart methods and the working method was executed for 20 minutes in which the heart rate, aortic pressure, aortic flow and coronary flow were measured and recorded. The control group is the group which the extracted heart was fixed on the isolated working heart model, recovered by reperfusion 60 minutes after infusion and preserved in the cardioplegic solution 20 minutes after the working heart perfusion and aortic cross clamp, The thesis groups were divided into group I, which ischemic hearts that were hypoxia induced were perfused by cardioplegic solution and preserved for 60 minutes; group II, the cardioplegic solution was infused 45 seconds (II-1), 1 minutes (II-2), 3 minutes (II-3), after the ischemia induction, 20 minutes after working heart perfusion and aortic cross clamp; and group III, hearts were executed on working heart perfusion for 20 minutes and aortic cross clamp was performed for 45 seconds (III-1), 1minute (III-2), 3 minutes (III-3), reperfused for 2 minutes to recover the heart, and then aortic cross clamping was repeated for reperfusion, all the groups were compared based on hemodynamic performance after reperfusion of the heart after preservation for 60 minutes. Result: The recovery time until spontaneous heart beat was longer in groups I, II-3, III-2 and III-3 to control group (p<0.01). Group III-1 (p<0.05) had better results in terms of recovery in number of heart rates compared to control group, and recovered better compared to II-1 (p<0.05). The recovery of aortic blood pressure favored group III-1 (p<0.05) and had better outcomes compared with II-1 (p<0.01). Group III-1 also showed best results in terms of cardiac output (p<0.05) and group III-2 was better compared to II-2 (p<0.05). Group I (p<0.01) and II-3 (p<0.05) showed more cardiac edema than control group. Conclusion: When the effects of other organs are dismissed, protecting the heart by infusion of cardioplegic solution after enforcing ischemia for a short period of time before the onset of abnormal heart beats for preconditioning has a better recovery effect in the cardioplegic group with preconditioning compared to the cardioplegic solution itself. we believe that further study is needed to find a more effective method of preconditioning.

The Effect of the Histidine-Tryptophan-Ketoglutarate (HTK) Solution on Myocardial Protection in Isolated Rat Heart (흰쥐의 적출심장에서 HTK 용액의 심근보호 효과)

  • 송원영;장봉현;김규태
    • Journal of Chest Surgery
    • /
    • v.37 no.8
    • /
    • pp.632-643
    • /
    • 2004
  • Background: The Histidine-Tryptophan-Ketoglutarate (HTK) solution has been shown to provide the excellent myocardial protection as a cardioplegia. The HTK solution has relatively low potassium as an arresting agent of myocardium, and low sodium content, and high. concentration of histidine biological buffer which confer a buffering capacity superior to that of blood.. Since HTK solution has an excellent myocardial protective ability, it is reported to protect myocardium from ischemia for a considerable time (120 minutes) with the single infusion of HTK solution as a cardioplegia. The purpose of this study is to evaluate the cardioprotective effect of HTK solution on myocardium when the ischemia is. exceeding 120 minutes at two different temperature (10 to 12$^{\circ}C$, 22 to 24$^{\circ}C$) using the Langendorff apparatus, Material and Method: Hearts from Sprague-Dawley rat, weighing 300 to 340 g, were perfused with Krebs-Henseleit solution at a perfusion pressure of 100 cm $H_2O$. After the stabilization, the heart rate, left ventricular developed pressure (LVDP), and coronary flow were measured. Single dose of HTK solution was infused into the ascending aorta of isolated rat heart and hearts were preserved at four different conditions. In group 1 (n=10), hearts were preserved at deep hypothermia (10∼12$^{\circ}C$) for 2 hours, in group 2 (n=10), hearts were preserved at moderate hypothermia (22∼24$^{\circ}C$) for 2 hours, in group 3 (n=10), hearts were preserved at deep hypothermia for 3 hours, and in group 4 (n=10), hearts were preserved at moderate hypothermia for 3 hours. After the completion of the preservation, the heart rate, left ventricular developed pressure, and coronary flow were measured at 15 minutes, 30 minutes, and 45 minutes after the initiation of reperfusion to assess the cardiac function. Biopsies were also done and mitochondrial scores were counted in two cases of each group for ultrastructural assessment. Result: The present study showed that the change of heart rate was not different between group 1 and group 2, and group 1 and group 3. The heart rate was significantly decreased at 15 minutes in group 4 compared to that of group 1 (p<0.05 by ANCOVA). The heart rate was recovered at 30 minutes and 45 minutes in group 4 with no significant difference compared to that of group 1. The decrease of LVDP was significant at 15 minutes, 30 minutes and 45 minutes in group 4 compared to that of group 1 (p < 0.001 by ANCOVA). Coronary flow was significantly decreased at 15 minutes, 30 minutes, and 45 minutes in group 4 compared to that of group 1 (p < 0.001 by ANCOVA). In ultrastructural assessment, the mean myocardial mitochondrial scores in group 1, group 2, group 3, and group 4 were 1.02$\pm$0.29, 1.52$\pm$0.26, 1.56$\pm$0.45, 2.22$\pm$0.44 respectively. Conclusion: The HTK solution provided excellent myocardial protection regardless of myocardial temperature for 2 hours. But, when ischemic time exceeded 2 hours, the myocardial hemodynamic function and ultrastructural changes were significantly deteriorated at moderate hypotherma (22∼ 24$^{\circ}C$). This indicates that it is recommended to decrease myocardial temperature when myocardial ischemic time exceeds 2 hours with single infusion of HTK solution as a cardioplegia.

Role of Mitochondria in Oxidative Damage of Post-Ischemic Reperfused Hearts (허혈/재관류 심장의 산화손상에서 미토콘드리아의 역할)

  • Park, Jong-Wan;Chun, Yang-Sook;Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.201-209
    • /
    • 1996
  • Restoration of the blood flow after a period of ischemia is accompanied by generation of toxic oxygen radicals. This phenomenon may account for the occurrence of reperfusion-mediated tissue injury in ischemic hearts. In in vitro studies, although oxygen radicals can be generated from a variety of sources, including xanthine oxidase system, activated leucocytes, mitochondria and others, the most important source and mechanism of oxygen radical production in the post-ischemic reperfused hearts is unclear. In the present study, we tested the hypothesis that the respiratory chain of mitochondria might be an important source of oxygen radicals which are responsible for the development of the reperfusion injury of ischemic hearts. Langendorff-perfused, isolated rat hearts were subjected to 30 min of global ischemia at $37^{\circ}C$, followed by reperfusion. Amytal, a reversible inhibitor of mitochondrial respiration, was employed to assess the mitochondrial contributions to the development of the reperfusion injury. Intact mitochonria were isolated from the control and the post-ischemic reperfused hearts. Mitochondrial oxygen radical generation was measured by chemiluminescence method and the oxidative tissue damage was estimated by measuring a lipid peroxidation product, malondialdehyde(MDA). To evaluate the extent of the reperfusion injury, post-ischemic functional recovery and lactate dehydrogenase(LDH) release were assessed and compared in Amytal-treated and -untreated hearts. Upon reperfusion of the ischemic hearts, MDA release into the coronary effluent was markedly increased. MDA content of mitochondria isolated from the post-ischemic reperfused hearts was increased to 152% of preischemic value, whereas minimal change was observed in extramitochondrial fraction. The generation of superoxide anion was increased about twice in mitochondria from the reperfused hearts than in those from the control hearts. Amytal inhibited the mitochondrial superoxide generation significantly and also suppressed MDA production in the reperfused hearts. Additionally, Amytal prevented the contractile dysfunction and the increased release of LDH observed in the reperfused hearts. In conclusion, these results indicate that the respiratory chain of mitochondria may be an important source of oxygen radical formation in post-ischemic reperfused hearts, and that oxygen radicals originating from the mitochondria may contribute to the development of myocardial reperfusion injury.

  • PDF

Effect of Cyclobuxine on Oxygen Free Radical Production and Cellular Damage Promoted by Arachidonate in Perfused Rat Hearts (허혈재-관류 적출심장에서 Arachidonic Acid에 의한 산소래디칼 생성 및 심근손상에 대한 Cyclobuxine의 영향)

  • Lee, Jong-Hwoa;Kwon, Jun-Tack;Cho, Byung-Heon;Park, Jong-An;Kim, Yu-Jae;Kim, Jong-Bae;Cha, Young-Deog;Kim, Chang-Ho
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.163-170
    • /
    • 1992
  • The present study was attempted to investigate the effect of cyclobuxine (a steroidal alkaloid) on generation of reactive oxygen metablite and myocardial damage promoted by an exogenous administeration of arachidonate in ischemic-reperfused hearts. Langendorff preparation of the isolated rat heart was made ischemic condition by reducing the flow rate to 0.5 ml/min for 45 min, and then followed by normal reperfusion (7 ml/min) for 5 min. The generation of superoxide anion was estimated by measuring the SOD-inhibitable ferricytochrome C reduction. The degree of lipid peroxidation in myocardial tissue was estimated from the tissue malondialdehyde (MDA) concentration using thiobarbituric acid method. The myocardial cell damage was observed by measuring LDH released into the coronary effluent. Sodium arachidonate $(0.1\;and\;1.0\;{\mu}g/ml)$ infused during the period of oxygenated reperfusion stimulated superoxide anion production dose-dependently. The rate of arachidonate-induced superoxide anion generation was markedly inhibited by cyclobuxine $(1.0\;and\;10\;{\mu}g/ml)$. The production of malondialdehyde was increased by infusion of arachidonate. This increase was prevented by superoxide dismutase (300 U/ml) and cyclobuxine $(1.0\;and\;10\;{\mu}g/ml)$. The release of LDH was increased by sodium arachidonate was also inhibited by superoxide dismutase and cyclobuxine. In conclusion, the present results suggest that cyclobuxine inhibits the production of reactive oxygen metabolite and myocardial damages which were promoted by an administeration of arachidonate during reperfusion of ischemic hearts.

  • PDF

Enact of Ischemic Preconditioning on Myocardial Protection A Comparative Study between Normothermic and Moderate Hypothermic Ischemic Hearts Induced by Cardioplegia in Rats - (허혈 전처치가 심근보호에 미치는 영향 -적출 쥐 심장에서 상온에서의 심근허혈과 중등도 제체온하에서 심근정지액 사용 시의 비교 연구-)

  • 조성준;황재준;김학제
    • Journal of Chest Surgery
    • /
    • v.36 no.4
    • /
    • pp.242-254
    • /
    • 2003
  • Most of the studies conducted have investigated the beneficial effects of ischemic preconditioning on normothermic myocardial ischemia. However, the effect of preconditioning could be attenuated through the use of multidose cold cardioplegia as practiced in contemporary clinical heart surgical procedures. The purpose of this study was to investigate whether preconditioning improves postischemic cardiac function in a model of 25℃ moderate hypothermic ischemic heart induced by cold cardioplegia in isolated rat hearts. Material and Method: The isolated Sprague-Dawley rat hearts were randomly assigned to four groups. All hearts were perfused at 37℃ for 20 minutes with Krebs-Henseleit solution before the baseline hemodynamic data were obtained. Group 1 consisted of preconditioned hearts that received 3 minutes of global ischemic preconditioning at 37℃, followed by 5 minutes of reperfusion before 120 minutes of cardioplegic arrest (n=6). Cold (4℃) St. Thomas Hospital cardioplegia solution was infused to induce cardioplegic arrest. Maintaining the heart at 25℃, infusion of the cardioplegia solution was repeated every 20 minutes throughout the 120 minutes of ischemic period. Group 2 consisted of control hearts that underwent no manipulations between the periods of equilibrium and 120 minutes of cardioplegic arrest (n=6). After 2 hours of cardioplegic arrest, Krebs solution was infused and hemodynamic data were obtained for 30 minutes (group 1, 2: cold cardioplegia group). Group 3 received two episodes of ischemic preconditioning before 30 min of 37℃ normothermic ischemia and 30 minutes of reperfusion (n=6). Group 4 served as ischemic controls for group 3 (group 3, 4: warm ischemia group). Result: Preconditioning did not influence parameters such as left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), rate-pressure product (RPP) and left ventricular dp/dt (LV dp/dt) in the cold cardioplegia group. (p=NS) However, preconditioning before warm ischemia attenuated the ischemia induced cardiac dysfunction, improving the LVSP, LVEDP, RPP, and LVdp/dt. Less leakage of CPK and LDH were observed in the ischemic preconditioning group compared to the control group (p<0.05). Conclusion: Ischemic preconditioning improved postischemic cardiac function after warm ischemia, but did not protect cold cardioplegic hearts.