The Effect of the Histidine-Tryptophan-Ketoglutarate (HTK) Solution on Myocardial Protection in Isolated Rat Heart

흰쥐의 적출심장에서 HTK 용액의 심근보호 효과

  • 송원영 (굿모닝 의원) ;
  • 장봉현 (경북대학교병원, 경북대학교 의과대학 흉부외과학교) ;
  • 김규태 (경북대학교병원, 경북대학교 의과대학 흉부외과학교실)
  • Published : 2004.08.01

Abstract

Background: The Histidine-Tryptophan-Ketoglutarate (HTK) solution has been shown to provide the excellent myocardial protection as a cardioplegia. The HTK solution has relatively low potassium as an arresting agent of myocardium, and low sodium content, and high. concentration of histidine biological buffer which confer a buffering capacity superior to that of blood.. Since HTK solution has an excellent myocardial protective ability, it is reported to protect myocardium from ischemia for a considerable time (120 minutes) with the single infusion of HTK solution as a cardioplegia. The purpose of this study is to evaluate the cardioprotective effect of HTK solution on myocardium when the ischemia is. exceeding 120 minutes at two different temperature (10 to 12$^{\circ}C$, 22 to 24$^{\circ}C$) using the Langendorff apparatus, Material and Method: Hearts from Sprague-Dawley rat, weighing 300 to 340 g, were perfused with Krebs-Henseleit solution at a perfusion pressure of 100 cm $H_2O$. After the stabilization, the heart rate, left ventricular developed pressure (LVDP), and coronary flow were measured. Single dose of HTK solution was infused into the ascending aorta of isolated rat heart and hearts were preserved at four different conditions. In group 1 (n=10), hearts were preserved at deep hypothermia (10∼12$^{\circ}C$) for 2 hours, in group 2 (n=10), hearts were preserved at moderate hypothermia (22∼24$^{\circ}C$) for 2 hours, in group 3 (n=10), hearts were preserved at deep hypothermia for 3 hours, and in group 4 (n=10), hearts were preserved at moderate hypothermia for 3 hours. After the completion of the preservation, the heart rate, left ventricular developed pressure, and coronary flow were measured at 15 minutes, 30 minutes, and 45 minutes after the initiation of reperfusion to assess the cardiac function. Biopsies were also done and mitochondrial scores were counted in two cases of each group for ultrastructural assessment. Result: The present study showed that the change of heart rate was not different between group 1 and group 2, and group 1 and group 3. The heart rate was significantly decreased at 15 minutes in group 4 compared to that of group 1 (p<0.05 by ANCOVA). The heart rate was recovered at 30 minutes and 45 minutes in group 4 with no significant difference compared to that of group 1. The decrease of LVDP was significant at 15 minutes, 30 minutes and 45 minutes in group 4 compared to that of group 1 (p < 0.001 by ANCOVA). Coronary flow was significantly decreased at 15 minutes, 30 minutes, and 45 minutes in group 4 compared to that of group 1 (p < 0.001 by ANCOVA). In ultrastructural assessment, the mean myocardial mitochondrial scores in group 1, group 2, group 3, and group 4 were 1.02$\pm$0.29, 1.52$\pm$0.26, 1.56$\pm$0.45, 2.22$\pm$0.44 respectively. Conclusion: The HTK solution provided excellent myocardial protection regardless of myocardial temperature for 2 hours. But, when ischemic time exceeded 2 hours, the myocardial hemodynamic function and ultrastructural changes were significantly deteriorated at moderate hypotherma (22∼ 24$^{\circ}C$). This indicates that it is recommended to decrease myocardial temperature when myocardial ischemic time exceeds 2 hours with single infusion of HTK solution as a cardioplegia.

배경: HTK 용액은 우수한 심근보호 효과를 나타내는 것으로 알려져 왔다. HTK 용액은 비교적 낮은 농도의 칼륨으로 심정지를 유도하고, 저농도의 나트륨을 함유하며, 혈액보다 우수한 완충능을 제공하는 생물학적 완충제인 histidine을 다량 포함하는 것이 특징이다. HTK 용액의 심근보호 효과는 우수하여 1회 주입으로 상당한 시간(120분) 허혈로부터 심근을 보호한다고 보고되었다. 이 연구는 두 가지 다른 심근온도(10∼12$^{\circ}C$, 22∼24$^{\circ}C$)하에서 심근 허혈이 120분을 초과할 때 HTK 용액의 심근보호 효과를 평가하고자 하였다. 대상 및 방법: 체중 300∼340 g의 Sprague-Dawley계 흰쥐의 심장을 적출 하여 Krebs-Henseleit용액으로 100 cm $H_2O$의 압력으로 관류시켰다. 안정화 후에 심박동수, 좌심실내압, 관 관류량을 측정하였다. 상행대동맥을 통하여 HTK 용액을 1회 주입 후 적출 심장을 각기 다른 4가지 방법으로 보존하였다. 제1군(n=10)은 10∼12$^{\circ}C$의 저온에서 2시간, 제2군(n=10)은 22∼24$^{\circ}C$의 저온에서 2시간, 제3군(n=10)은 10∼12$^{\circ}C$의 저온에서 3시간, 제4군(n=10)은 22∼24$^{\circ}C$의 저온에서 3시간 보존하였다. 보존을 끝낸 후 적출 심장을 다시 관류 장치에 연결하여 재관류 후 15분, 30분, 45분에 각 각 심박동수, 좌심실내압, 관 관류량을 측정하였다. 미세구조 변화를 평가하기 위하여 심근을 생검하여 사립체 점수를 측정하였다. 결과: 심박동수는 제1군과 2군, 제1군과 3군의 비교에서 차이가 없었다. 제4군에서 재관류 후 15분에서 심박동수가 제1군에 비하여 유의하게 감소하였으나(p<0.05 by ANCOVA), 30분, 45분에서 심박동수는 회복되었고 제1군과 유의한 차이가 없었다. 좌심실내압은 제4군에서 재관류 후 15분, 30분, 45분에서 제1군에 비해 유의하게 감소하였다(p<0.001 by ANCOVA). 관 관류량은 제4군에서 재관류 후 15분, 30분, 45분에서 제1군에 비해 유의하게 감소하였다(p<0.001 by ANCOVA). 미세구조 변화의 평가에서 심근의 평균 사립체 점수는 제1군 1.02$\pm$0.29, 제2군 1.52$\pm$0.26, 제3군 1.56$\pm$0.45, 제4군 2.22$\pm$0.44였다. 걸론: HTK 용액은 2시간의 심근 허혈에 대하여 심근 온도에 관계없이 우수한 심근보호 효과를 나타내나, 허혈시간이 2시간을 초과하면 심근의 혈역학적 기능과 미세구조의 변화는 중등도의 저온(22∼24$^{\circ}C$)에서 유의하게 악화되었다. 이 같은 결과로 볼 때 심근 허혈시간이 2시간을 초과한다면 심근 온도를 낮추어야 할 것으로 판단된다.

Keywords

References

  1. Surgery v.33 Closure of atrial septal defects with the aid of hypothermia:experimental accomplishments and the report of one successful case Lewis FJ;Taufic M
  2. Lancet v.21 no.SUP.1 Elective cardiac arrest:preliminary communication Melrose DG;Dreyer B;Bentall HH;Baker JB
  3. Verh Dtsch Ges Kreislaufforschung v.30 Uberlebenszeit und Weiderbelebungszeit des Herzens bei Normo-und Hypothermie Bretschneider HJ
  4. Thorac Cardiovasc Surg v.28 Myocardial protection Bretschneider HJ https://doi.org/10.1055/s-2007-1022099
  5. J Thorac Cardiovasc Surg v.79 Ultrastructural and cytochemical correlates of myocardial protection by cardiac hypothermia in man Flameng W;Borgers M;Daenen W;Stalpaert G
  6. J Thorac Cardisvasc Surg v.84 The relationship between myocardial temperature and recovery after experimental cardioplegic arrest Rosenfeldt FL
  7. J Thorac Cardiovasc Surg v.102 Myocardial temperature management during aortic clamping for cardiac surgery Buckberg GD
  8. J Thorac Cardiovasc Surg v.82 Importance of topical hypothermia to ensure uniform myocardial cooling during coronary artery bypass Landymore RW;Tice D;Trehan N;Spencer F
  9. Ann Thorac Surg v.27 Interference with local myocardial cooling by heat gain during aortic cross-clamping Rosenfeldt FL;Watson DA.Ⅱ https://doi.org/10.1016/S0003-4975(10)62964-5
  10. J Thorac Cardiovasc Surg v.93 Clinical comparisons of methods of myocardial protection Daily PO;Pfeffer TA;Wisniewski JB(et al.)
  11. Ann Thorac Surg v.51 Role of potassium concentration in cardioplegic solutions mediating endothelial damage Mankad PS;Chester AH;Yacoub MH https://doi.org/10.1016/0003-4975(91)90457-2
  12. J Thorac Cardiovas Surg v.101 Lowering the calcium concentration in St. Thomas' Hospital cardioplegic solution improves protection during hypothermic ischemia Robinson LA.;Harwood D L
  13. Ann Thorac Surg v.62 The Scientific Basis for Hypocalcemic Cardioplegia and Reperfusion in Cardiac Surgery Chen RH https://doi.org/10.1016/S0003-4975(96)00462-6
  14. J Thorac Cardiovasc Surg v.84 Experimental evaluation of magnesium cardioplegia Wakabayashi A;Nishi T;Guilmette JE
  15. J Thorac Cardiovasc Surg v.98 The effects of calcium and magnesium in hyperkalemic cardioplegic solutions on myocardial preservation Geffin GA;Love TR;Hendren WG(et al.)
  16. J Thorac Cardiovasc Surg v.114 THE relationship between calcium and magnesium in pediatric myocardial protection Kronon M;Bolling KS;Allen BS(et al.) https://doi.org/10.1016/S0022-5223(97)70015-1
  17. Ann Thorac Surg v.52 Not all neonatal hearts are qually protected from ischemic damage during hypothermia Wittnich C;Maitland A;Vincente W;Salemo T https://doi.org/10.1016/0003-4975(91)91267-Y
  18. J Thorac Cardiovasc Surg v.116 Insulin stimulates pyruvate dehydrogenase and protects humanventricular cardiomyocytes from simulated ischemia Rao V;Merante F;Weisel RD(et al.) https://doi.org/10.1016/S0022-5223(98)70015-7
  19. J Thorac Cardiovasc Surg v.108 Aprotinin improves myocardial recovery after ischemia and reperfusion:Effects of the drug on isolated rat hearts Gurevitch J;Barak J;Hochhauser E;Paz Y;Yakirevich V
  20. J Thorac Cardiovasc Surg v.103 Response of the hypertrophied left ventricle to global ischemia. Comparision of hyperkalemic cardioplegic solution with and without verapamil Huddleston CB;Wareing TH;Boucek RJ;Hammon JW Jr.
  21. Circulation v.92 Improved Protection of the Hypertrophied Left Ventricle by Histidine-Containing Cardioplegia Takeuchi K;Buenaventura P;Cao-Danh H(et al.)
  22. J Thorac Cardiovasc Surg v.77 A proposed solution to the cardioplegic controversy Buckberg,G.D.
  23. Eur J Cardiothorac Surg v.21 Myocardial injury in hypertrophic hearts of patients undergoing aortic valve surgery using cold or warm blood cardioplegia Ascione R;Caputo M;Gomes WJ(et al.) https://doi.org/10.1016/S1010-7940(01)01168-X
  24. Eur J Cardiothorac Surg v.19 Cold continuous antegrade blood cardioplegia:high versus low hematocrit Baretti R;Mizuno A;Buckberg GD;Young HH;Hetzer R https://doi.org/10.1016/S1010-7940(01)00643-1
  25. Ann Thorac Surg v.50 Endothelialcell toxicity of solid-organ preservation solutions Von Oppell UO;Pfeiffer S;Preiss P;Dunne T;Zilla P;Reichart B https://doi.org/10.1016/0003-4975(90)91117-T
  26. Ann Thorac Surg v.64 Clinical assessment of prolonged myocardial preservation for patients with a severely dilated heart Hachida M;Nonoyama M;Bonkohara Y(et al.) https://doi.org/10.1016/S0003-4975(97)82821-4
  27. J Card Surg v.13 Comparision of clinical outcome between Histidine-Triptophan-Ketoglutarate solution and cold blood cardioplegic solution in mitral valve replacement Sakata JI;Morishita K;Ito T;Koshino T;Kazui T;Abe T https://doi.org/10.1111/j.1540-8191.1998.tb01053.x