• Title/Summary/Keyword: Isoform

Search Result 324, Processing Time 0.03 seconds

Desmin Binding Property of Nebulin Isoforms

  • Jeon Eun-Hee;Lee Yeong-Mi;Lee Min-A;Kim Ji-Hee;Choi Jae-Kyong;Park Eun-Ran;Kim Hyun-Suk;Ahn Seung-Ju;Min Byung-In;Joo Young-Mi;Kim Chong-Rak
    • Biomedical Science Letters
    • /
    • v.12 no.2
    • /
    • pp.73-79
    • /
    • 2006
  • Nebulin is a giant ($600{\sim}900$ kDa), modular sarcomeric protein proposed to regulate the assembly, and to specify the precise lengths of actin filamints in vertebrate skeletal muscles. Recently, There is an evidence that the nebulin also expressed in non muscle tissue, brain and liver. We identified a new isoform of nebulin from adult brain library by PCR screening. It contains two simple-repeats exon 165, 166 and linker-repeats exon $154{\sim}161$ except exon 159. The nebulin modules M160 to M170 (exon 150 to exon 161) has been shown to bind desmin. In mature striated muscle, desmin intermediate filaments surround Z-discs and link individual myofibrils laterally at their Z-discs and to other intracellular structures, including the costameres and the intercalated discs of the sarcolemma, sarcoplasmic reticulum, mitochondria, T-tubules, and nuclei. Therefore, it is an interesting possibility that the differential splice pathways within the linker region of nebulin modify the affinity of nebulin's interaction with desmin. The specific interactions of nebulin and desmin were confirmed in vivo by yeast two hybrid experiments. To verify in the cellular level the interaction between nebulin isoform and desmin, we transfected COS-7 cell with EGFP-tagged nebulin and DsRed-tagged desmin. Based on evidence showing that despite exon 159 was deleted, the new isoform of nebulin was interact with desmin. This suggest that nebulin in brain may interact with another intermediate filament. The conservation of these ligand-binding capacity in brain and skeletal nebulins suggest that nebulins may have conserved roles in brain and skeletal muscle.

  • PDF

R-type Calcium Channel Isoform in Rat Dorsal Root Ganglion Neurons

  • Fang, Zhi;Hwang, Jae-Hong;Kim, Joong-Soo;Jung, Sung-Jun;Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • R-type $Ca_v2.3$ high voltage-activated $Ca^{2+}$ channels in peripheral sensory neurons contribute to pain transmission. Recently we have demonstrated that, among the six $Ca_v2.3$ isoforms ($Ca_v2.3a{\sim}Ca_v2.3e$), the $Ca_v2.3e$ isoform is primarily expressed in trigeminal ganglion (TG) nociceptive neurons. In the present study, we further investigated expression patterns of $Ca_v2.3$ isoforms in the dorsal root ganglion (DRG) neurons. As in TG neurons, whole tissue RT-PCR analyses revealed the presence of two isoforms, $Ca_v2.3a$ and $Ca_v2.3e$, in DRG neurons. Single-cell RT-PCR detected the expression of $Ca_v2.3e$ mRNA in 20% (n=14/70) of DRG neurons, relative to $Ca_v2.3a$ expression in 2.8% (n=2/70) of DRG neurons. $Ca_v2.3e$ mRNA was mainly detected in small-sized neurons (n=12/14), but in only a few medium-sized neurons (n=2/14) and not in large-sized neurons, indicating the prominence of $Ca_v2.3e$ in nociceptive DRG neurons. Moreover, $Ca_v2.3e$ was preferentially expressed in tyrosine-kinase A (trkA)-positive, isolectin B4 (IB4)-negative and transient receptor potential vanilloid 1 (TRPV1)-positive neurons. These results suggest that $Ca_v2.3e$ may be the main R-type $Ca^{2+}$ channel isoform in nociceptive DRG neurons and thereby a potential target for pain treatment, not only in the trigeminal system but also in the spinal system.

Purification of a New Elicitin from Phytopthora cambivora KACC40160 (Phytophthora cambivora KACC 40160으로부터 새로운 elicitin의 분리)

  • Yoon, Sang-Hong;Bae, Shin-Chul;Park, In-Cheol;Koo, Bon-Sung;Kim, Young-Hwan;Yeo, Yun-Soo
    • Applied Biological Chemistry
    • /
    • v.46 no.2
    • /
    • pp.79-83
    • /
    • 2003
  • Elicitins, proteinaceous elicitors secreted from Oomycetes fungi (Phytophthora spp. and Pythium spp.), have been known as inducer of hypersensitive response (HR) in incompatible interactions between plant and pathogens. Five elicitins among many Korean Phytophthora species caused the reactions of distal HR in radish, chinese cabbage and some hot pepper cultivars, but not in cucumber and tomato. Because the isolation of elicitin from Phytophthora cambivora hasn't been reported yet, we have purified a cambivorein, a new member of the elicitin family, from the culture filtrate of Phytophtilora cambivora (KACC 40160) by using FPLC (Fast Protein Liquid Chromatography, AKTA) with sepharose S and Sephacryl HR columns. We confirmed that it induces necrosis activities in some hot pepper cultivars and its molecular weight is about 10 KDa by Tricine-SDS-PAGE. Comparison of amino acid sequences of its N-terminal ends also informed the identification of Iysine at the 13th position, which is characteristic of a kind of basic elicitin isoform $({\beta}-isoform)$. It Also showed that our elicitin is not identical with N-terminal sequences of many elicitins reported from Phytophthora spp..

Alternative Messenger RNA Splicing of Autophagic Gene Beclin 1 in Human B-cell Acute Lymphoblastic Leukemia Cells

  • Niu, Yu-Na;Liu, Qing-Qing;Zhang, Su-Ping;Yuan, Na;Cao, Yan;Cai, Jin-Yang;Lin, Wei-Wei;Xu, Fei;Wang, Zhi-Jian;Chen, Bo;Wang, Jian-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2153-2158
    • /
    • 2014
  • Beclin 1 is a key factor for initiation and regulation of autophagy, which is a cellular catabolic process involved in tumorigenesis. To investigate the role of alternative splicing of Beclin1 in the regulation of autophagy in leukemia cells, Beclin1 mRNA from 6 different types of cell lines and peripheral blood mononuclear cells from 2 healthy volunteers was reversely transcribed, subcloned, and screened for alternative splicing. New transcript variants were analyzed by DNA sequencing. A transcript variant of Beclin 1 gene carrying a deletion of exon 11, which encoded a C-terminal truncation of Beclin 1 isoform, was found. The alternative isoform was assessed by bioinformatics, immunoblotting and subcellular localization. The results showed that this variable transcript is generated by alternative 3' splicing, and its translational product displayed a reduced activity in induction of autophagy by starvation, indicating that the spliced isoform might function as a dominant negative modulator of autophagy. Our findings suggest that the alternative splicing of Beclin 1 might play important roles in leukemogenesis regulated by autophagy.

Regulation of CYP1A1 and Inflammatory Cytokine by NCOA7 Isoform 4 in Response to Dioxin Induced Airway Inflammation

  • Cho, Sung-Hwan;Park, Shin Young;Lee, Eun Jeong;Cho, Yo Han;Park, Hyun Sun;Hong, Seok-Ho;Kim, Woo Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • Background: Aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, binds to a wide variety of synthetic and naturally occurring compounds. AhR is involved in the regulation of inflammatory response during acute and chronic respiratory diseases. We investigated whether nuclear receptor coactivator 7 (NCOA7) could regulate transcriptional levels of AhR target genes and inflammatory cytokines in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated human bronchial epithelial cells. This study was based on our previous study that NCOA7 was differentially expressed between normal and chronic obstructive pulmonary disease lung tissues. Methods: BEAS-2B and A549 cells grown under serum-free conditions were treated with or without TCDD (0.15 nM and 6.5 nM) for 24 hours after transfection of pCMV-NCOA7 isoform 4. Expression levels of cytochrome P4501A1 (CYP1A1), IL-6, and IL-8 were measured by quantitative real-time polymerase chain reaction. Results: The transcriptional activities of CYP1A1 and inflammatory cytokines were strongly induced by TCDD treatment in both BEAS-2B and A549 cell lines. The NCOA7 isoform 4 oppositely regulated the transcriptional activities of CYP1A1 and inflammatory cytokines between BEAS-2B and A549 cell lines. Conclusion: Our results suggest that NCOA7 could act as a regulator in the TCDD-AhR signaling pathway with dual roles in normal and abnormal physiological conditions.

Regulatory Mechanism in Tissue-specific Expression of Insulin-like Growth Factor-I Gene (Insulin-like growth factor-I 유전자의 조직 특이적 발현에 대한 조절기전)

  • 안미라
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.329-334
    • /
    • 2003
  • The present study was aimed at investigating the regulatory mechanism in tissue-specific expression of insulin-like growth factor-I (IGF-I) gene. The expression of IGF-I gene was determined by a solution hybridization/RNase protection assay using total RNA prepared from rat liver or brain of various ages. The levels of IGF-I transcripts were increased in liver gradually after birth, but decreased in brain. By using an oligonucleotide (FRE) corresponding to the C/EBP binding site of the rat IGF-I exon 1, multiple forms of C/EBP${\alpha}$ and C/EBP${\beta}$ proteins, which have DNA-binding activity, were detected in the rat liver or brain. Western immunoblot and southwestern analyses show that p42$\^$C/EBP${\alpha}$/, p38$\^$C/EBP${\alpha}$/, p35$\^$C/EBP${\alpha}$/, p38$\^$C/EBP${\beta}$/, and p35$\^$C/EBP${\beta}$ form specific complexes with the IGF-I exon 1 oligonucleotide in liver nuclear extract and that p42$\^$C/EBP${\alpha}$/ and p38$\^$C/EBP${\beta}$/ form complexes in brain. These data suggest that the formation of FRE-C/EBP isoform complexes may play important roles in the tissue-specific regulation of IGF-I gene expression.

cDNA cloning of a membrane-associated. magnesium-dependent 30kDa neutral sphingomyelinase

  • Jeon, Hyung-Jun;Jung, Sung-Yun;Kim, Dae-Kyong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.328.1-328.1
    • /
    • 2002
  • A major lipid-signaling pathway in mammalian cells implicated the activation of sphingomyelinase (SMase), which hydrolyses sphingomyeline to generate ceramide and phosphocholine. Sphingomyelinase is divided into many isoform groups dependent on optimal pH, and essential cation especially magnesium in their activation. Such as acidic sphingomyelinase, neutral sphingomyelinase and alkaline sphingomyelinase. Ceramide is known as a crucial second messenger in cell responses like cell proliferation. cell cycle arrest. cellular senescence, and apoptosis. (omitted)

  • PDF

Analysis of brain protein expression in developing mouse fetus (임신일령에 따른 생쥐 태아 뇌조직의 단백질 발현 양상 분석)

  • Han, Rong-Xun;Kim, Hong-Rye;Diao, Yun-Fei;Woo, Je-Seok;Jin, Dong-Il
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.65-70
    • /
    • 2011
  • Development of mouse fetus brains can be defined morphologically and functionally by three developmental stages, embryo day (ED) 16, postnatal stage one week and eight weeks. These defined stages of brain development may be closely associated with differential gene expression rates due to limited cellular resources such as energy, space, and free water. Complex patterns of expressed genes and proteins during brain development suggests the changes in relative concentrations of proteins rather than the increase in numbers of new gene products. This study was designed to evaluate early protein expression pattern in mouse fetus brain. The mouse brain proteome of fetus at ED 15.5, and 19.5 was obtained using 2-dimensional gel electrophoresis (DE). Analysis of the 2-DE gels in pH 3-10 range revealed the presence of 15 differentially expressed spots, of which 11 spots were identified to be known proteins following MALDI-TOF analysis; 3 spots were up-regulated and 8 spots were down-regulated in the mouse fetus brain at ED 15.5. UP-regulated proteins were identified as MCG18238, isoform M2 of pyruvate kinase isozymes M1/M2, isoform 2 of heterogeneous nuclear ribonucleoprotein K, heterogeneous nuclear ribonucleoprotein H2, creatine kinase B-type, 40S ribosomal protein SA and hemoglobin subunit beta-H1. Down-regulated proteins were putative uncharacterized protein, lactoylglutathione lyase and secreted acidic cysteine rich glycoprotein. Our results revealed composite profiles of mouse fetus brain proteins related to mouse fetus development by 2-DE analysis implying possible roles of these proteins in neural differentiation.

Spatiotemporal expression of RCAN1 and its isoform RCAN1-4 in the mouse hippocampus after pilocarpine-induced status epilepticus

  • Cho, Kyung-Ok;Jeong, Kyoung Hoon;Cha, Jung-Ho;Kim, Seong Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • Regulator of calcineurin 1 (RCAN1) can be induced by an intracellular calcium increase and oxidative stress, which are characteristic features of temporal lobe epilepsy. Thus, we investigated the spatiotemporal expression and cellular localization of RCAN1 protein and mRNA in the mouse hippocampus after pilocarpine-induced status epilepticus (SE). Male C57BL/6 mice were given pilocarpine hydrochloride (280 mg/kg, i.p.) and allowed to develop 2 h of SE. Then the animals were given diazepam (10 mg/kg, i.p.) to stop the seizures and sacrificed at 1, 3, 7, 14, or 28 day after SE. Cresyl violet staining showed that pilocarpine-induced SE resulted in cell death in the CA1 and CA3 subfields of the hippocampus from 3 day after SE. RCAN1 immunoreactivity showed that RCAN1 was mainly expressed in neurons in the shammanipulated hippocampi. At 1 day after SE, RCAN1 expression became detected in hippocampal neuropils. However, RCAN1 signals were markedly enhanced in cells with stellate morphology at 3 and 7 day after SE, which were confirmed to be reactive astrocytes, but not microglia by double immunofluorescence. In addition, realtime reverse transcriptase-polymerase chain reaction showed a significant upregulation of RCAN1 isoform 4 (RCAN1-4) mRNA in the SE-induced hippocampi. Finally, in situ hybridization with immunohistochemistry revealed astrocytic expression of RCAN1-4 after SE. These results demonstrate astrocytic upregulation of RCAN1 and RCAN1-4 in the mouse hippocampus in the acute and subacute phases of epileptogenesis, providing foundational information for the potential role of RCAN1 in reactive astrocytes during epileptogenesis.