• Title/Summary/Keyword: Isodose Curve

Search Result 51, Processing Time 0.019 seconds

A Study on the Isodose Distribution in a Vascular Characterization Room

  • Choi, Young;Kang, Byung-Sam;Min, Jung-Whan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.1
    • /
    • pp.7-11
    • /
    • 2011
  • As applications of radiation grow wider from use in the early detection of lesions and preventive diagnosis purposes to the treatment of diseases, the possibilities for patients and working professionals to be exposed to radiation are becoming greater than ever. This can not only directly bring about an increase in patient's individual radiation exposure, but also brings about an increase in the annual radiation dose of working professionals. Therefore, research and countermeasures to reduce radiation dosage are required. In this study, space dosimetry has been divided into two separate measuments with an understanding of the increasing number of angiography procedures: front perspective and side perspective. According to the results of the isodose curve, a way to minimize radiation exposure in working professionals has been suggested. This was made possible by workers through awareness of suitable working positions.

  • PDF

Verification of Dose Distribution for Stereotactic Radiosurgery with a Linear Accelerator (선형가속기를 이용한 방사선 수술의 선량분포의 실험적 확인)

  • Park Kyung Ran;Kim Kye Jun;Chu Sung Sil;Lee Jong Young;Joh Chul Woo;Lee Chang Geol;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.421-430
    • /
    • 1993
  • The calculation of dose distribution in multiple arc stereotactic radiotherapy is a three-dimensional problem and, therefore, the three-dimensional dose calculation algorithm is important and the algorithm's accuracy and reliability should be confirmed experimentally. The aim of this study is to verify the dose distribution of stereotactic radiosurgery experimentally and to investigate the effect of the beam quality, the number of arcs of radiation, and the tertiary collimation on the resulting dose distribution. Film dosimetry with phantom measurements was done to get the three-dimensional orthogonal isodose distribution. All experiments were carried out with a 6 MV X-ray, except for the study of the effects of beam energy on dose distribution, which was done for X-ray energies of 6 and 15 MV. The irradiation technique was from 4 to 11 arcs at intervals of from 15 to 45 degrees between each arc with various field sizes with additional circular collimator. The dose distributions of square field with linear accelerator collimator compared with the dose distributions obtained using circular field with tertiary collimator. The parameters used for comparing the results were the shape of the isodose curve, dose fall-offs fom $90\%$ to $50\%$ and from $90\%\;to\;20\%$ isodose line for the steepest and shallowest profile, and $A=\frac{90\%\;isodose\;area}{50\%\;isodose\;area-90\%\;isodose\;area}$(modified from Chierego). This ratio may be considered as being proportional to the sparing of normal tissue around the target volume. The effect of beam energy in 6 and 15 MV X-ray indicated that the shapes of isodose curves were the same. The value of ratio A and the steepest and shallowest dose fall-offs for 6 MV X-ray was minimally better than that for 15 MV X-ray. These data illustrated that an increase in the dimensions of the field from 10 to 28 mm in diameter did not significantly change the isodose distribution. There was no significant difference in dose gradient and the shape of isodose curve regardless of the number of arcs for field sizes of 10, 21, and 32 mm in diameter. The shape of isodose curves was more circular in circular field and square in square field. And the dose gradient for the circular field was slightly better than that for the square field.

  • PDF

A Study on Dose Calculation in Intracavitary Radiotherapy of the Carcinoma of the Uterine Cervix with TAO Applicator (TAO Applicator를 이용한 자궁경암 강내조사시의 선양계산에 관한 고찰)

  • Kim, Chul-Soo;Kim, Jung-Jin
    • Radiation Oncology Journal
    • /
    • v.2 no.1
    • /
    • pp.101-106
    • /
    • 1984
  • Various methods are available for determination of exposure time in intracavitary radiotherapy of the carcinoma of the uterine cervix. To determine the accuracy of dose calculation with isodose curve for TAO applicator, comparison with results calculated by computer for radiotherapy treatment Planning was done in 24 procedures done in 12 consecutive patients with the carcinoma of the uterine cervix from May to December, 1983. The results are as follows: 1. The average dose rate Per hour of Point A was 87.70 rad, being 89.91 rad ana 85.49 rad in left and right, respectively. 2. The average percentage of dose rate of point A calculated by isodose curve method over that by computer was $101.28\%$ and the difference was less than $5\%$ in 17 Procedures and over $10\%$ in only 3 procedures. 3. The average percentage in case of point B was $108.67\%$. In conclusion, in most cases the difference was less than 200 rad for point A and less than 100 rad for point B during 2 courses of intracavitary radiotherapy. And so the dose rate calculation with isodose curve for TAO applicator is comparatively accurate.

  • PDF

GafChromic RTQA Film Dosimetry for Laser Beam with Photodynamic Therapy (GafChromic RTQA Film을 이용한 광역학적 치료용 레이저의 선질 측정)

  • Lee, Byung Koo;Lim, Hyun Soo;Kenar, Necla
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.73-79
    • /
    • 2013
  • Purpose: The purposes of this study were to measure the dose distribution of Photodynamic therapy(PDT) laser with 635 nm wavelength using GafChromic film. Method & Result: We made each output 300 J by changing mW and sec using the laser beam radiation mode such as C.W(Continuous Wave) mode, Pulse mode and Burst Pulse mode and measured the does at 0 mm and 5 mm of distance from optic fiber catheter end to the film, and at 5 mm distance by changing the angle of the end of the optic fiber catheter as $0^{\circ}$ and $0.5^{\circ}$. The radiated film was scanned and OD(Optical Density) was compared. And two-dimensional isodose curves were obtained and the consistency of shapes was compared. It was confirmed that there was consistency between optic density and the dose radiated on the film when we radiated GafChromic film by changing distance and angle of 300 J output in each radiation mode coordinating mW and sec. Conclusion: In this study, we could identify the stability according to changes in laser beam modes, changes in output according to distance, changes in uniformity according to angle, and beam profiles using GafChromic film, and we could also get two-dimensional isodose curve. It was found that small change in the distance and angle that is made when optic fiber catheter was contacted on the treatment area did not make big effects on the output of beam and the uniformity of dose, and it was also found that GafChromic film could be utilized for the purpose of QA of PDT laser beam.

Determination of an Effective Wedge Angle by Combination of Two Arbitrary Universal Wedge Fields in Radiation Therapy of Cancer Patients with Megavoltage Photon Beams

  • Shamsi, Azin;Birgani, Mohammad Javad Tahmasebi;Behrooz, Mohammad Ali;Arvandi, Sholeh;Fatahiasl, Jafar;Maskny, Reza;Abdalvand, Neda
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.197-200
    • /
    • 2016
  • Background: Wedge filters are commonly used in radiation oncology for eliminating hot spots and creating a uniform dose distribution in optimizing isodose curves in the target volume for clinical aspects. These are some limited standard physical wedges ($15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$),or creating an arbitrary wedge angle, like motorized wedge or dynamic wedge,${\ldots}$ The new formulation is presented by the combination of wedge fields for determining an arbitrary effective wedge angles. The isodose curves also are derived for these wedges. Materials and Methods: we performed the dosimetry of Varian Clinac 2100C/D with Scanditronix Wellhofer water blue phantom, CU500E, OmniPro - Accept software and 0.13cc ionization chamber for 6Mv photon beam in depth of 10cm (reference depth) for universal physical wedges ($15^{\circ}$, $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$) and reference field $10.10cm^2$. By combining the isodose curve standard wedge fields with compatible weighting dose for each field, the effective isodose curve is calculated for any wedge angle. Results: The relation between a given effective wedge angle and the weighting of each combining wedge fields was derived. A good agreement was found between the measured and calculated wedge angles and the maximum deviation did not exceed $3^{\circ}$. The difference between the measured and calculated data decreased when the combined wedge angles were closer. The results are in agreement with the motorized single wedge appliance in the literature. Conclusions: This technique showed that the effective wedge angle that is obtained from this method is adequate for clinical applications and the motorized wedge formalism is a special case of this consideration.

Three Dimensional Dose Planning Using 6MV X-ray and Multiaxial Computed Tomography for Pituitary Adenoma (6MV X-선과 전산화 단층 촬영상을 이용한 뇌하수체 종양 치료계획)

  • Lee, Myung-Za;Choi, Tae-Jin
    • Radiation Oncology Journal
    • /
    • v.3 no.1
    • /
    • pp.59-64
    • /
    • 1985
  • Computation of three dimensional dose distribution using CT image and RT plan was applied to a case of pituitary adenoma. Algorithm was based on two dimensional Tissue Maximun Ratio model extended to the third dimension. The resulting isodose curve of transeverse, coronal and sagittal section was demonstrated. This RT plan allows computation of dose distribution in any arbitarily defined plane in addition to conventional cross sectional view.

  • PDF

Object-Oriented Stereotactic Radiosurgery Planning System (객체 지향 개념을 이용한 뇌정위 방사선 수술 계획 시스템)

  • Park, S.H.;Suh, T.S.;Suh, D.Y.;Kang, W.S.;Ha, S.H.;Kim, I.H.;Park, C.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.85-87
    • /
    • 1994
  • In this paper, we present an object-oriented stereotactic radiosurgery planning system, which accepts medical images such as CT and angiography, transforms the coordinates to a reference frame coordinate, calculates dose distributions, and finally displays isodose curves over the images. The user finds an adequate one for radiosurgeries after performing computer simulations on different treatment parameter sets. The object-oriented design concept was fully applied to the system composed of seven manager objects of different classes: a patient information manager, a user-interface manager, a coordinate transformation manager, a blackboard manager, a dose calculation manager, an isodose curve display manager, and a report manager. All the user interactions are carried out through the use of mouse buttons. The performance of the system was verified by four physicians and two medical physicists, and now is being used in two clinical sites.

  • PDF

The Patient Care During Before Radiotherapy in Oral Cavity Cancer (구강내 종양환자의 방사선 치료시의 Patient Care)

  • Jeon Byeong-chul;Park Jae-il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.7 no.1
    • /
    • pp.92-96
    • /
    • 1995
  • All patients who will Undergo irraidiation of the oral cavity cancer will need dental before and during Radiotherapy. The extent of the region and the presence of numerous critical normal tissues(mucosa, gingiva, teeth and the alveolar ridge, alveolar bony structure, etc) in the oral cavity area, injury to which could result in serious functional impairment. Therefore I evaluate the Usefulness of custom-made intraoral shielding device before and during Radiotherapy in oral cavity cancer. Materials and Methods(1) : Manufacture process of Custom-made intraoral shielding device Containing Cerroband. A. Acquisition of impression B. Matrix Constitution C. Separation by Separator D. Sprincle on method E. Trimming F. Spacing G. Fill with Cerroband Materials and Methods (2) A. Preannealing B. TLD Set up C. Annealing D. TLD Reading = Results = Therefore dosimetric characteristics in oral cavity by TLD Compared to isodose curve dose distribution Ipsilateral oral mucosa, Contralateral oral mucosa, alveolar ridge, tongue, dose was reduced by intraoral shielding device containning Cerroband technique Compard to isodose plan = Conclusions = The custom-made intra-oral shielding device containing Cerroband was useful in reducing the Contralateral oral mucosa dose and Volume irradiated.

  • PDF

Distortion of the Dose Profile in a Three-dimensional Moving Phantom to Simulate Tumor Motion during Image-guided Radiosurgery (방사선수술에서 종양 움직임을 재현시킨 움직이는 팬텀을 이용하여 선량 분포의 왜곡에 대한 연구)

  • Kim, Mi-Sook;Ha, Seong-Hwan;Lee, Dong-Han;Ji, Young-Hoon;Yoo, Seong-Yul;Cho, Chul-Koo;Yang, Kwang-Mo;Yoo, Hyung-Jun;Seo, Young-Seok;Park, Chan-Il;Kim, Il-Han;Ye, Seong-Jun;Park, Jae-Hong;Kim, Kum-Bae
    • Radiation Oncology Journal
    • /
    • v.25 no.4
    • /
    • pp.268-277
    • /
    • 2007
  • Purpose: Respiratory motion is a considerable inhibiting factor for precise treatment with stereotactic radiosurgery using the CyberKnife (CK). In this study, we developed a moving phantom to simulate three-dimensional breathing movement and investigated the distortion of dose profiles between the use of a moving phantom and a static phantom. Materials and Methods: The phantom consisted of four pieces of polyethylene; two sheets of Gafchromic film were inserted for dosimetry. Treatment was planned to deliver 30 Gy to virtual tumors of 20, 30, 40, and 50 mm diameters using 104 beams and a single center mode. A specially designed robot produced three-dimensional motion in the right-left, anterior-posterior, and craniocaudal directions of 5, 10 and 20 mm, respectively. Using the optical density of the films as a function of dose, the dose profiles of both static and moving phantoms were measured. Results: The prescribed isodose to cover the virtual tumors on the static phantom were 80% for 20 mm, 84% for 30 mm, 83% for 40 mm and 80% for 50 mm tumors. However, to compensate for the respiratory motion, the minimum isodose levels to cover the moving target were 70% for the $30{\sim}50$ mm diameter tumors and 60% for a 20 mm tumor. For the 20 mm tumor, the gaps between the isodose curves for the static and moving phantoms were 3.2, 3.3, 3.5 and 1.1 mm for the cranial, caudal, right, and left direction, respectively. In the case of the 30 mm tumor, the gaps were 3.9, 4.2, 2.8, 0 mm, respectively. In the case of the 40 mm tumor, the gaps were 4.0, 4.8, 1.1, and 0 mm, respectively. In the case of the 50 mm diameter tumor, the gaps were 3.9, 3.9, 0 and 0 mm, respectively. Conclusion: For a tumor of a 20 mm diameter, the 80% isodose curve can be planned to cover the tumor; a 60% isodose curve will have to be chosen due to the tumor motion. The gap between these 80% and 60% curves is 5 mm. In tumors with diameters of 30, 40 and 50 mm, the whole tumor will be covered if an isodose curve of about 70% is selected, equivalent of placing a respiratory margin of below 5 mm. It was confirmed that during CK treatment for a moving tumor, the range of distortion produced by motion was less than the range of motion itself.

The dosimetric Properties of Electron Beam Using Lyon Intraoperative Device for Intraoperative Radiation Therapy (LID (Lyon Intraoperative Device) 이용한 수술중 방사선치료시 전자선의 선량분포 특성)

  • Kim Kye Jun;Park Kyung Ran;Lee Jong Young;Kim Hie Yeon;Sung Ki Jocn;Chu Sung Sil
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.85-93
    • /
    • 1992
  • We have studied the dosimetric properties of electron beam using Lyon intraoperative device for intraoperative radiation therapy. The dosimetry data had compiled in such a way that a quick and correct decision regarding the cone shape, energy, and accurate calculations could be made. Using 3 dimensional water phantom, we have got the following data: cone output ratios, surface dose, $d_{max}$, $d_{90}$, flatness, symmetry, beam profiles, isodose curve, and SSD correction factors. The cone output ratios were measured with straight and bevelled cone, respectively. As the cone size and the energy were reduced, the cone output ratios decreased rapidly. With the flattening filter, the surface dose increased by electron beam to $85.3\%$, $89.2\%$, and $93.4\%$, for 6 MeV, 9 MeV, and 12 MeV, respectively. It is important to increase the surface dose to $90\%$ or more. Inspite of diminishing dose rate and beam penetration, this flattening filter increases the treatment volume significantly. With the combination of the three levels collimation and the flattening filter, we achieved good homogeneity of the beam and better flatness and the diameter of the 90$\%$ isodose curve was increased. It is important to increase the area that is included in the $90\%$ isodose level. The value of measured and calculated SSD correction factors did not agree over the clinically important range from 100 cm to 110 cm.

  • PDF