• Title/Summary/Keyword: Isoclinic

Search Result 11, Processing Time 0.023 seconds

Mathematical Morphology Guided Automatic Unwrapping Isoclinic Phase Map in White Light Photoelasticity

  • Liu, Xiaomeng;Dai, Shuguang
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.643-648
    • /
    • 2015
  • By comparing the results calculated by atan() and atan2() functions, the correctly estimated region of isoclinic phase map is determined using morphological techniques. The isoclinic phase map is automatically unwrapped in the true phase range -π/2 to π/2. Demonstrations of the method on a disc and a ring under diametral compression are performed. Test results compare well with the theoretical results. Furthermore, the influences of principal stress direction and the range of isoclinic phase upon stress separation are discussed.

Measurement of Principal Stress Direction by Photoelastic Phase Shifting Method (광탄성 위상이동법을 이용한 주응력 방향 측정법)

  • 김명수;김환;백태현
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1982-1989
    • /
    • 2004
  • In photoelasticity, the directions of principal stresses are given by isoclinic fringe patterns. In this study, photoelastic theory is represented by Jones calculus and the photoelastic 8-step phase shifting method is described. A feasibility study using computer simulation is done to get isoclinics from photoelastic fringes of a circular disk under diametral compression. Fringe patterns of the disk are generated from the stress-optic law. The magnitudes of isoclinics obtained from the fringe patterns of computer simulation and experiment are compared with those of theory. The results are close between them. Then, the 8-step phase shifting method is applied to get distributions of isoclinics along the specified lines of a cuved beam plate under tensile load. Experimental results obtained from the phase shifting method were compared with those of finite element analysis (ANSYS). It is confirmed that measurement of isoclinic distributions is possible by use of photoelasitc phase shifting method.

Separation of Isochromatics and Isoclinics from Photoelastic Fringes in a Circular Disk by Phase Measuring Technique

  • Baek, Tae-Hyun;Kim, Myung-Soo;Yoshihau Morimoto;Motoharu Fujigaki
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.175-181
    • /
    • 2002
  • A new polariscope system involving two rotating optical elements and a digital camera for whole field fringe analysis allows automated data to be acquired quickly and efficiently. The developed phase measuring technique that uses eight images through a circular polariscope is presented for the digital measurement of isochromatics and isoclinics, respectively, from photoelastic fringes in a circular disk under diametric compression. Isochromatics can directly be obtained using wrapped isoclinic phases calculated by the arc tangent operator which is the four-quadrant operator from -$\pi$ to $\pi$. It is not required to unwrap isoclinic phases for the calculations of isochromatics. Unwrapped isoclinics are directly determined from isochromatic parameters. Distributions of digitally determined isoclinics are in close agreement to manual measurements. The errors which would appear in unwrapping process of isoclinics can be avoided in the determination of isochromatics.

Stress Distribution of a Crane Hook by Photoelasticty Using 4-step Phase Shifting Method and finite Element Method (광탄성 4단계 위상 이동법과 유한요소법에 의한 크레인 훅의 응력분포 비교)

  • Baek, Tae-Hyun;Kim, Whan;Lee, Chun-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.38-44
    • /
    • 2004
  • An experimental study for a crane hook was performed to investigate the stress distribution along a certain line where the maximum and minimum stresses to be developed. On this line, the isoclinic fringe and/or principal stress direction is constant. The crane hook was modeled into a 2-dimensional plate made of urethane rubber called 'Photoflex' The Photoflex is very sensitive to a load and has low photoelastic fringe constant. The Tardy compensation method with the fringe sharpening process and the 4-step phase shifting method, was used for the photoelastic technique. Experimental results by photoelasticity were compared with the calculated stresses from the simple curved beam theory and tile finite element analysis. Ail the results were close to each other.

Simulation of Separating Isoclinics and Isochromatics from Photoelastic Fringes of a Disk using 8-step Phase Shifting Methodology (광탄성 프린지 위상이동법을 적용한 디스크의 등경 및 등색프린지 분리법에 관한 시뮬레이션)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Cho, Sung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.189-196
    • /
    • 2001
  • Photoelasticity is one of the most widely used methods for whole field stress analysis. In photoelasticity, the difference and the directions of the principal stresses we given isochromatic and isoclinic fringe patterns. Conventionally, principal stress directions are measured manually by relating the polarizer and analyzer of a plane polariscope at the same time. This is known to be the Tardy compensation method. This measurement can be very tedious and time consuming in whole field analysis. It is not possible to separate isoclincs from photoelastic fringes by conventional photoelastic technique. In this study, photoelastic theory is represented by Jones matrices and 4-steps and 8-steps phase shifting methods are described A feasibility study using computer simulation is done to separate isoclincs and isochomatics from photoelastic fringes of a circular disk under diametrical compression. Fringe patterns of the disk are generated using stress optic law. The magnitudes of isoclincs and isochromatics obtained from 8-step phase shifting method are compared with those of theories. From computer simulation, it is verified to separate isoclincs and isochomatics from photoelastic fringes.

  • PDF

A Photoelastic Stress Analysis of Bilateral Distal Extension Removable Partial Denture with Attachment Retainers (정밀 부착형 유지장치에 따른 양측성 유리단 국소의치의 광탄성 응력분석)

  • Cho, Hye-Won;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.23 no.1
    • /
    • pp.97-112
    • /
    • 1985
  • The purpose of this study was to evaluate the stress patterns developed in supporting structures by removable partial denture with attachment retainers. The attachments tested were Dalbo(miniature) attachment, resilient Ceka attachment, rigid Ceka attachment, precision and sleeve attachment, and R.P.I. clasp as a contrast. 3-dimensional photoelastic stress analysis was used to record the isochromatic and isoclinic fringe patterns and to calculate principal stress components at measuring points. The results showed that: 1. The maximum compressive stress on residual ridge was produced under the loading point with Dalbo and resilient Ceka attachment, distal to the loading point with rigid Ceka and precision and sleeve attachment, and mesial to the loading point with R.P.I. clasp. 2. The Dalbo attachment produced the most stress on residual ridge, and the least stress on abutment teeth. and resilient Ceka attachment showed favorable stress distribution. 3. Rigid Ceka attachment produced higher compressive stress on buccal. alveolar crest, and precision and sleeve attachment produced higher compressive stress on distal alvelolar crest and mesial surface of the root apex in abutment teeth. 4. R.P.I. clasp produced higher compressive stress on mesial alveolar crest.

  • PDF

Fringe Analysis around an Inclined Crack Tip of Finite-Width Plate under Tensile Load by Photoelastic Phase-Shifting Method (광탄성 위상이동법을 이용한 인장판 경사균열 선단주위의 프린지 해석)

  • Li, Weizheng;Baek, Tae-Hyun;Hong, Dong-Pyo;Lee, Byung-Hee;Seo, Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • Photoelasticity is a technique of experimental methods and has been widely used in various domains of engineering to determine the stress distribution of structures. Without complicated mathematical formulation, this technique can conveniently provide a fairly accurate whole-field stress analysis for a mechanical structure. Here, stress distribution around an inclined crack tip of finite-width plate is studied by 8-step phase-shifting method. This method is a kind of photoelastic phase-shifting techniques and can be used for the determination of the phase values of isochromatics and isoclinics. According to stress-optic law, the stress distribution could be obtained from fringe patterns. The results obtained by polariscope arrangement combined with 8-step method and ABAQUS FEM simulations are compared with each other. Good agreement between them shows that 8-step phase-shifting method is reliable and can be used for determination of stress by experiment.

Measurement of Isochromatic Fringe Distribution of a TV Glass Panel by Use of Photoelastic 4-step Phase Shifting Method (광탄성 4단계 위상이동법을 이용한 TV유리패널의 등색프린지 분포측정)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Cho, Seong-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • This paper presents the experimental results measured by photoelastic 4-step phase shifting method for the isochromatic fringe distribution in a TV glass panel. In the conventional photoelastic method, the isochromatic fringe orders are measured manually point by point. The 4-step phase shifting method uses four images obtained from a circular polariscope by rotating the analyzer to $0^{\circ},\;45^{\circ},\;90^{\circ}$, and $135^{\circ}$. In order to use the 4-step phase shifting method, the elements of a polariscope should be aligned to isoclinic direction at a point and/or along a line where isochromatic fringe distribution is measured. Experimental results obtained from the 4-step phase shifting method are compared with those measured by the Senarmont compensation method. Both results are well agreed. Then, isochromatic fringe distributions in the TV glass panel that is heat-treated before and after are compared. Maximum and minimum isochromatic fringe orders in the TV glass panel with before- and after-heat treatment are changed approximately two times.

Stress Analysis of an Edge-Cracked Plate by using Photoelastic Fringe Phase Shifting Method (광탄성프린지 위상이동법을 이용한 에지균열판의 응력 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Cho, Sung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.3
    • /
    • pp.213-220
    • /
    • 2000
  • The method of photoelasticity allows one to obtain principal stress differences and principal stress directions in a photoelastic model. In the classical approach, the photoelastic parameters are measured manually point by point. The previous methods require much time and skill in the identification and measurement of photoelastic data. Fringe phase shifting method has been recently developed and widely used to measure and analyze fringe data in photo-mechanics. This paper presents the test results of photoelastic fringe phase shifting technique for the stress analysis of a circular disk under compression and an edge-cracked plate subjected to tensile load. The technique used here requires four phase stepped photoelastic images obtained from a circular polariscope by rotating the analyzer at $0^{\circ}$, $45^{\circ}$, $90^{\circ}$ and $135^{\circ}$. Experimental results are compared with those or FEM. Good agreement between the results can be observed. However, some error may be included if the technique is used to general direction which is not parallel to isoclinic fringe.

  • PDF