• Title/Summary/Keyword: Ischemic Stroke

Search Result 594, Processing Time 0.024 seconds

Comparison of Lens Dose in accordance with Bismuth shielding and Patient position in Brain perfusion CT (Brain Perfusion CT에서 Bismuth 차폐와 환자의 자세 변화에 따른 수정체 선량 비교 연구)

  • Gang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.47-52
    • /
    • 2018
  • Brain perfusion CT scanning is often employed usefully in clinical conditions as it accurately and promptly provides information about the perfusion state of patients having acute ischemic stroke with a lot of time constraints and allows them to receive proper treatment. Despite those strengths of it, it also has a serious weakness that Lens may be exposed to a lot of dose of radiation in it. In this study, as a way to reduce the dose of radiation to Lens in brain perfusion CT scanning, this researcher conducted an experiment with Bismuth shielding and change of patients' position. TLD (TLD-100) was placed on both lens using the phantom (PBU-50), and then, in total 4 positions, parallel to IOML, parallel to IOML (Bismuth shielding), parallel to SOML, and parallel to SOML (Bismuth shielding), brain perfusion scanning was done 5 times for each position, and dose to Lens were measured. Also, to examine how the picture quality changed in different positions, 4 areas of interest were designated in 4 spots, and then, CT number and noise changes were measured and compared. According to the results of conducting one-way ANOVA on the doses measured, as the significance probability was found to be 0.000, so there was difference found in the doses of radiation to crystalline lenses. According to the results of Duncan's post-hoc test, with the scanning of being parallel to IOML as the reference, the reduction of 89.16% and 89.66% was observed in the scanning of being parallel to SOML and that of being parallel to SOML (Bismuth shielding) respectively, so the doses to Lens reduced significantly. Next, in the scanning of being parallel to IOML (Bismuth shielding), the reduction of 37.12% was found. According to the results, reduction in the doses of radiation was found the most significantly both in the scanning of being parallel to SOML and that of being parallel to SOML (Bismuth shielding). With the limit of the equivalent dose to Lens as the reference, this researcher conducted comparison with the dose to occupational exposure and dose to Public exposure in the scanning of being parallel to IOML and found 39.47% and 394.73% respectively; however in the scanning of being parallel to SOML (Bismuth shielding), considerable reduction was found as 4.08% and 40.8% respectively. According to the results of evaluation on picture quality, every image was found to meet the evaluative standards of phantom scanning in terms of the measurement of CT numbers and noise. In conclusion, it would be the most useful way to reduce the dose of radiation to Lens to use shields in brain perfusion CT scanning and adjust patients' position so that their lens will not be in the field of radiation.

'Clinical Observation for the 226 Cases of CVA' (뇌졸중환자(腦卒中患者) 226예(例)에 대(對)한 임상적(臨床的) 고찰(考察))

  • Lee, Seong-Hun;Jun, Chan-Yong;Park, Chong-Hyeong
    • The Journal of Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.5-24
    • /
    • 1997
  • Clinical observation was made on 226 cases of CVA that were confirmed through brain CT, MRI scan and clinical observation. They were hospitalized in the oriental medical hospital of Kyung-Won University from January to December in 1995. 1. The CVA cases were classified into the following kinds: cerebral infarction, cerebral hemorrhage, subarachnoid hemorrhage(SAH), transient ischemic attack, and the greatest in number among them were the cases of cerebral infarction. 2. The frequency of strokes was much the same between male and female cases and most cases were over 50 of age. 3. In the case of cerebral infarction the place of the most frequent occurrences was in the MCA territory, and as for cerebral hemorrhage, in the basal ganglia area. 4. The most ordinary preceding disease was hypertension. The next was diabetes mellitus. 5. Generally it is thought that CVA occurs frequently in winter. But on the contrary this study of observation confirmed that it occurs mostly in spring and summer. 6. The predisposing factors of cerebral infarction were usually initiated during the time of resting and sleeping and those of cerebral hemorrhage chiefly during the time of exercising. 7. As concerns the course of hospitalization, most patients passed through vestern medical hospitals or oriental medical hospitals. 8. For the patients the condition of whose consciousness was bad at the time of admission. the prognosis in most cases was bad. 9. The common symptoms were motor disability and verbal disturbance. 10. With regard to cerebral infarction, the average time to start physical theraphy was 6.4 days and with cerebral hemorrhage 9.7 days after stroke. 11. The duration of hospitalization was in most cases more than one month. 12. The main complication was urinary tract infection. 13. At the time of admission to hospital, the blood pressure in most cases was high, but it well controlled at the time of discharge. 14. Most cases were given simultaneous treatment in both ways of western and oriental medicine.

  • PDF

Effect of NMDA Receptor Antagonist on Local Cerebral Glucose Metabolic Rate in Focal Cerebral Ischemia (국소뇌허혈에서 NMDA 수용체 길항제가 국소 뇌포도당 대사율에 미치는 영향)

  • Kim, Sang-Eun;Hong, Seung-Bong;Yoon, Byung-Woo;Bae, Sang-Kyun;Choi, Chang-Woon;Lee, Dong-Soo;Chung, June-Key;Roh, Jae-Kyu;Lee, Myung-Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.3
    • /
    • pp.294-306
    • /
    • 1995
  • There has recently been increasing interest in the use of NMDA receptor antagonists as potential neuroprotective agents for the treatment of ischemic stroke. To evaluate the neuroprotective effect of the selective non-competitive NMDA receptor antagonist MK-801 in focal cerebral ischemia, local cerebral glucose utilization (ICGU) was examined in 15 neuroanatomically discrete regions of the conscious rat brain using the 2-deoxy-D[$^{14}C$] glucose quantitative autoradiographic technique 24 hr after left middle cerebral artery occlusion (MCAO). Animals received MK-801 (5 mg/kg i.v.) or saline vehicle before (20-30 min) or after (30 min) MCAO. Both pretreatment and posttreatment of MK-801 increased occluded/non-occluded ICGU ratio in 7 and 5 of the 15 regions measured, respectively (most notably in cortical structures). Following MK-801 pretreatment, there was evidence of widespread increases in ICGU not only in the non-occluded hemisphere (12 of the 15 areas studied) but also in the occluded hemisphere (13 of the 15 areas studied), while MK-801 postreatment did not significantly increase ICGU both in the normal and occluded hemispheres. These data indicate that MK-801 has a neuroprotective effect in focal cerebral ischemia and demonstrate that MK-801 provides widespread alterations of glucose utilization in conscious animals.

  • PDF

Ginsenoside compound K protects against cerebral ischemia/ reperfusion injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy

  • Qingxia Huang;Jing Li;Jinjin Chen;Zepeng Zhang;Peng Xu;Hongyu Qi;Zhaoqiang Chen;Jiaqi Liu;Jing Lu;Mengqi Shi;Yibin Zhang;Ying Ma;Daqing Zhao;Xiangyan Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.408-419
    • /
    • 2023
  • Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2 mediated mitochondrial dynamics and bioenergy.