• 제목/요약/키워드: Ischemia and reperfusion

Search Result 445, Processing Time 0.032 seconds

The Effect of the Histidine-Tryptophan-Ketoglutarate (HTK) Solution on Myocardial Protection in Isolated Rat Heart (흰쥐의 적출심장에서 HTK 용액의 심근보호 효과)

  • 송원영;장봉현;김규태
    • Journal of Chest Surgery
    • /
    • v.37 no.8
    • /
    • pp.632-643
    • /
    • 2004
  • Background: The Histidine-Tryptophan-Ketoglutarate (HTK) solution has been shown to provide the excellent myocardial protection as a cardioplegia. The HTK solution has relatively low potassium as an arresting agent of myocardium, and low sodium content, and high. concentration of histidine biological buffer which confer a buffering capacity superior to that of blood.. Since HTK solution has an excellent myocardial protective ability, it is reported to protect myocardium from ischemia for a considerable time (120 minutes) with the single infusion of HTK solution as a cardioplegia. The purpose of this study is to evaluate the cardioprotective effect of HTK solution on myocardium when the ischemia is. exceeding 120 minutes at two different temperature (10 to 12$^{\circ}C$, 22 to 24$^{\circ}C$) using the Langendorff apparatus, Material and Method: Hearts from Sprague-Dawley rat, weighing 300 to 340 g, were perfused with Krebs-Henseleit solution at a perfusion pressure of 100 cm $H_2O$. After the stabilization, the heart rate, left ventricular developed pressure (LVDP), and coronary flow were measured. Single dose of HTK solution was infused into the ascending aorta of isolated rat heart and hearts were preserved at four different conditions. In group 1 (n=10), hearts were preserved at deep hypothermia (10∼12$^{\circ}C$) for 2 hours, in group 2 (n=10), hearts were preserved at moderate hypothermia (22∼24$^{\circ}C$) for 2 hours, in group 3 (n=10), hearts were preserved at deep hypothermia for 3 hours, and in group 4 (n=10), hearts were preserved at moderate hypothermia for 3 hours. After the completion of the preservation, the heart rate, left ventricular developed pressure, and coronary flow were measured at 15 minutes, 30 minutes, and 45 minutes after the initiation of reperfusion to assess the cardiac function. Biopsies were also done and mitochondrial scores were counted in two cases of each group for ultrastructural assessment. Result: The present study showed that the change of heart rate was not different between group 1 and group 2, and group 1 and group 3. The heart rate was significantly decreased at 15 minutes in group 4 compared to that of group 1 (p<0.05 by ANCOVA). The heart rate was recovered at 30 minutes and 45 minutes in group 4 with no significant difference compared to that of group 1. The decrease of LVDP was significant at 15 minutes, 30 minutes and 45 minutes in group 4 compared to that of group 1 (p < 0.001 by ANCOVA). Coronary flow was significantly decreased at 15 minutes, 30 minutes, and 45 minutes in group 4 compared to that of group 1 (p < 0.001 by ANCOVA). In ultrastructural assessment, the mean myocardial mitochondrial scores in group 1, group 2, group 3, and group 4 were 1.02$\pm$0.29, 1.52$\pm$0.26, 1.56$\pm$0.45, 2.22$\pm$0.44 respectively. Conclusion: The HTK solution provided excellent myocardial protection regardless of myocardial temperature for 2 hours. But, when ischemic time exceeded 2 hours, the myocardial hemodynamic function and ultrastructural changes were significantly deteriorated at moderate hypotherma (22∼ 24$^{\circ}C$). This indicates that it is recommended to decrease myocardial temperature when myocardial ischemic time exceeds 2 hours with single infusion of HTK solution as a cardioplegia.

A Comparison of the Effects of Histidine-tryptophan-ketoglutarate Solution versus Cold Blood Cardioplegic Solution on Myocardial Protection in Mitral Valve Surgery (승모판막수술 시 히스티딘를 함유한 결정성 심정지액(Histidine-tryptophan-ketoglutarate Solution)과 저온 혈성 심정지액이 심근기능 보존에 미치는 영향 비교)

  • Choi, Yong-Seon;Bang, Sou-Ouk;Chang, Byung-Chul;Lee, Sak;Park, Chol-Hee;Kwak, Young-Lan
    • Journal of Chest Surgery
    • /
    • v.40 no.6 s.275
    • /
    • pp.399-406
    • /
    • 2007
  • Background: Ischemia-reperfusion injury related to unsuccessful myocardial protection affects postoperative ventricular function and mortality during open-heart surgery. We prospectively compared the effects of administration of histidine-tryptophan-ketoglutarate (HTK) solution and cold blood cardioplegia (CBC) on myocardial protection and clinical outcome in patients undergoing mitral valve surgery. Material and Method: Seventy patients with mitral regurgitation (MR) undergoing mitral valve surgery were randomly divided into the HTK group (n=31) and the CBC group (n=31 ): eight patients were excluded. Perioperative hemodynamics, cardiac medications, pacing, postoperative outcomes and complications were recorded during the hospital stay. All patients received follow-up for at least 6 months postoperatively for morbidity and mortality. Resuか: There were no significant differences in the hemodynamics between the groups during the study period, except for the mean pulmonary artery pressure (MPAP), PCWP and CVP that were lower in the HTK group at 15 min after weaning of CBP. There were no differences for inotropic support and pacing during the 12 hrs postoperatively between the groups. CK-MB values on day 1 and day 2 were $77{\pm}54$ and $41{\pm}23$ for the HTK group and $70{\pm}69$ and $44{\pm}34$ for the CBC group, respectively (p=NS). Postoperative clinical outcomes were similar in both groups for at least 6 months during the follow-up period. Conclusion: These results suggest that the use of HTK solution is as safe as cold blood cardioplegia in terms of myocardial protection.

The Change of Vascular Reactivity in Rat Thoracic Aorta 3 Days after Acute Myocardial Infarction (흰쥐에서 급성심근경색 3일 후 흉부 대동맥 혈관 반응성의 변화)

  • Lee, Sub;Roh, Woon-Seok;Jang, Jae-Seok;Bae, Chi-Hoon;Park, Ki-Sung;Lee, Jong-Tae
    • Journal of Chest Surgery
    • /
    • v.42 no.5
    • /
    • pp.576-587
    • /
    • 2009
  • Background: The up-regulation of the nitric oxide (NO)-cGMP pathway might be involved in the change of vascular reactivity in rats 3 days after they suffer acute myocardial infarction. However, the underlying mechanism for this has not been clarified. Material and Method: Acute myocardial infarction (AMI) was induced by occluding the left anterior descending coronary artery (LAD) for 30 min (Group AMI), whereas the sham-operated control rats were treated similarly without LAD occlusion (Group SHAM), The concentration-response relationships for phenylephrine (PE), KCl, acetylcholine (Ach) and sodium nitroprusside (SNP) were determined in the endothelium intact E(+) and endothelium denuded E(-) thoracic aortic rings from the rats 3 days after AMI or a SHAM operation. The concentration-response relationships of PE in the E(+) rings from the AMI rats were compared with those relationships in the rings pretreated with nitric oxide synthase (NOS) inhibitor $N{\omega}$-nitro-L-arginine methyl ester (L-NAME) or the cyclooxygenase inhibitor indomethacin. The plasma nitrite/nitrate concentrations were checked via a Griess reaction. The cyclic GMP content in the thoracic aortic rings was measured by radioimmunoassay and the endothelial nitric oxide synthase (eNOS) mRNA expression was assessed by real time PCR. Result: The mean infarct size (%) in the rats with AMI was $21.3{\pm}0.62%$. The heart rate and the systolic and diastolic blood pressure were not significantly changed in the AMI rats. The sensitivity of the contractile response to PE and KCl was significantly decreased in both the E(+) and E(-) aortic rings of the AMI group (p<0.05). L-NAME completely reversed these contractile responses whereas indomethacin did not (p<0.05). Moreover, the sensitivity of the relaxation response to Ach was also significantly decreased in the AMI group (p<0.05). The plasma nitrite and nitrate content (p<0.05), the basal cGMP content (p<0.05) and the eNOS mRNA expression (p=0.056) in the AMI rats were increased as compared with the SHAM group. Conclusion: Our findings indicate that the increased eNOS activity and the up-regulation of the NO-cGMP pathway can be attributed to the decreased contractile or relaxation response in the rat thoracic aorta 3 days after AMI.

Comparison of Inflammatory Response and Myocardial injury Between Normoxic and Hyperoxic Condition during Cardiopulmonary Bypass (체외순환 시 정상 산소분압과 고 산소분압의 염증반응 및 심근손상에 관한 비교연구)

  • 김기봉;최석철;최국렬;정석목;최강주;김양원;김병훈;이양행;조광현
    • Journal of Chest Surgery
    • /
    • v.34 no.7
    • /
    • pp.524-533
    • /
    • 2001
  • Background: Hyperoxemic cardiopulmonary bypass (CPB) has been recognized as a safe technique and is widely used in cardiac surgery. However, hyperoxemic CPB may produce higher toxic oxygen species and cause more severe oxidative stress and ischemia/reperfusion injury than normoxemic CPB. This study was undertaken to compare inflammatory responses and myocardial injury between normoxemic and hyperoxemic CPB and to examine the beneficial effect of normoxemic CPB. Material and method: Thirty adult patients scheduled for elective cardiac surgery were randomly divided into normoxic group (n=15), who received normoxemic CPB (about Pa $O_{2}$ 120 mmHg), and hyperoxic group (n=15), who received hyperoxemic CPB (about Pa $O_{2}$ 400 mmHg). Myeloperoxidase (MPO), malondialdehyde (MDA), adenosine monophosphate (AMP), and troponin-T (TnT) concentrations in coronary sinus blood were determined at pre- and post-CPB. Total leukocyte and neutrophil counts in arterial blood were measured at the before, during, and after CPB. Lactate concentration in mixed venous blood was analyzed during CPB, and cardiac index (Cl) and pulmonary vascular

  • PDF

Inflammatory Reponse of the Lung to Hypothermia and Fluid Therapy after Hemorrhagic Shock in Rats (흰쥐에서 출혈성 쇼크 후 회복 시 저체온법 및 수액 치료에 따른 폐장의 염증성 변화)

  • Jang, Won-Chae;Beom, Min-Sun;Jeong, In-Seok;Hong, Young-Ju;Oh, Bong-Suk
    • Journal of Chest Surgery
    • /
    • v.39 no.12 s.269
    • /
    • pp.879-890
    • /
    • 2006
  • Background: The dysfunction of multiple organs is found to be caused by reactive oxygen species as a major modulator of microvascular injury after hemorrhagic shock. Hemorrhagic shock, one of many causes inducing acute lung injury, is associated with increase in alveolocapillary permeability and characterized by edema, neutrophil infiltration, and hemorrhage in the interstitial and alveolar space. Aggressive and rapid fluid resuscitation potentially might increased the risk of pulmonary dysfunction by the interstitial edema. Therefore, in order to improve the pulmonary dysfunction induced by hemorrhagic shock, the present study was attempted to investigate how to reduce the inflammatory responses and edema in lung. Material and Method: Male Sprague-Dawley rats, weight 300 to 350 gm were anesthetized with ketamine(7 mg/kg) intramuscular Hemorrhagic Shock(HS) was induced by withdrawal of 3 mL/100 g over 10 min. through right jugular vein. Mean arterial pressure was then maintained at $35{\sim}40$ mmHg by further blood withdrawal. At 60 min. after HS, the shed blood and Ringer's solution or 5% albumin was infused to restore mean carotid arterial pressure over 80 mmHg. Rats were divided into three groups according to rectal temperature level($37^{\circ}C$[normothermia] vs $33^{\circ}C$[mild hypothermia]) and resuscitation fluid(lactate Ringer's solution vs 5% albumin solution). Group I consisted of rats with the normothermia and lactate Ringer's solution infusion. Group II consisted of rats with the systemic hypothermia and lactate Ringer's solution infusion. Group III consisted of rats with the systemic hypothermia and 5% albumin solution infusion. Hemodynamic parameters(heart rate, mean carotid arterial pressure), metabolism, and pulmonary tissue damage were observed for 4 hours. Result: In all experimental groups including 6 rats in group I, totally 26 rats were alive in 3rd stage. However, bleeding volume of group I in first stage was $3.2{\pm}0.5$ mL/100 g less than those of group II($3.9{\pm}0.8$ mL/100 g) and group III($4.1{\pm}0.7$ mL/100 g). Fluid volume infused in 2nd stage was $28.6{\pm}6.0$ mL(group I), $20.6{\pm}4.0$ mL(group II) and $14.7{\pm}2.7$ mL(group III), retrospectively in which there was statistically a significance between all groups(p<0.05). Plasma potassium level was markedly elevated in comparison with other groups(II and III), whereas glucose level was obviously reduced in 2nd stage of group I. Level of interleukine-8 in group I was obviously higher than that of group II or III(p<0.05). They were $1.834{\pm}437$ pg/mL(group I), $1,006{\pm}532$ pg/mL(group II), and $764{\pm}302$ pg/mL(group III), retrospectively. In histologic score, the score of group III($1.6{\pm}0.6$) was significantly lower than that of group I($2.8{\pm}1.2$)(p<0.05). Conclusion: In pressure-controlled hemorrhagic shock model, it is suggested that hypothermia might inhibit the direct damage of ischemic tissue through reduction of basic metabolic rate in shock state compared to normothermia. It seems that hypothermia should be benefit to recovery pulmonary function by reducing replaced fluid volume, inhibiting anti-inflammatory agent(IL-8) and leukocyte infiltration in state of ischemia-reperfusion injury. However, if is considered that other changes in pulmonary damage and inflammatory responses might induce by not only kinds of fluid solutions but also hypothermia, and that the detailed evaluation should be study.