• Title/Summary/Keyword: Is-Spice

Search Result 478, Processing Time 0.023 seconds

Integrated Circuit Implementation and Analysis of a Pulse-type Hodgkin-Huxley Neuron Model (펄스형 호지킨-혁슬리 신경세포 모델의 집적회로 구현 및 분석)

  • Kwon, Bo-Min;Jung, Jin-Woo;Park, Ju-Hong;Lee, Je-Won;Park, Yong-Su;Song, Han-Jung
    • 전자공학회논문지 IE
    • /
    • v.46 no.1
    • /
    • pp.16-22
    • /
    • 2009
  • Integrated circuit of a pulse-type neuron for Hodgkin-Huxley model is implemented in a $0.5{\mu}m$ 1 poly 2 metal CMOS technology. Proposed pulse-type neuron model consist of input stage with summing function and pulse generating block which make neuron pulse above threshold value. Pulse generating circuit consist of several transistors, capacitors and negative resistor with a charge supply function. SPICE simulation results show that neuron pulse is generated above threshold current of 70 nA. Measurements of the fabricated pulse type neuron chip in condition of 5 V power supply are shown and compared with the simulated results.

Spectral Analysis Method to Eliminate Spurious in FMICW HRR Millimeter-Wave Seeker (주파수 변조 단속 지속파를 이용하는 고해상도 밀리미터파 탐색기의 스퓨리어스 제거를 위한 스펙트럼 분석 기법)

  • Yang, Hee-Seong;Chun, Joo-Hwan;Song, Sung-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.85-95
    • /
    • 2012
  • In this thesis, we develop a spectral analysis scheme to eliminate the spurious peaks generated in HRR Millimeterwave Seeker based on FMICW system. In contrast to FMCW system, FMICW system generates spurious peaks in the spectrum of its IF signal, caused by the periodic discontinuity of the signal. These peaks make the accuracy of the system depend on the previously estimated range if a band pass filter is utilized to eliminate them and noise floor go to high level if random interrupted sequence is utilized and in case of using staggering process, we must transmit several waveforms to obtain overlapped information. Using the spectral analysis one of the schemes such as IAA(Iterative Adaptive Approach) and SPICE(SemiParametric Iterative Covariance-based Estimation method) which were introduced recently, the spurious peaks can be eliminated effectively. In order to utilize IAA and SPICE, since we must distinguish between reliable data and unreliable data and only use reliable data, STFT(Short Time Fourier Transform) is applied to the distinguishment process.

A Design of 16-QAM Modulator by use of Direct Digital Frequency Synthesizer (디지탈 직접 주파수 합성기를 이용한 16-QAM 변조기 설계)

  • 유상범;유흥균
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.52-57
    • /
    • 1999
  • It is very important to design of QAM modulator of high spectral efficiency for high speed data transmission. In this paper, typical 16-QAM modulator is designed by modification design of DDFS(direct digital frequency synthesizer). DDFS generates sinusoidal waveform digitally to the frequency setting word. Phase modulation is accuratly made by control of a generated phase increment value and amplitude modulation is accomplished in the D/A converter output by control of amplitude level. For the suppression of harmonics and glitch, dual-structured DDFS is studied to improve the spurious characteristics. P-Spice is used for design and simulation in mixed mode. Also we can get the satisfactory results of designed 16-QAM modulator from the constellation output.

  • PDF

A Design of Temperature Sensor Circuit Using CMOS Process (CMOS 공정을 이용한 온도 센서 회로의 설계)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1117-1122
    • /
    • 2009
  • In this work, temperature sensor and control circuit for measuring temperature are proposed. The proposed circuit can be fabricated without additional CMOS fabrication process and the output of proposed circuit is digital value. The supply voltage is 5volts and the circuit is designed by using 0.5${\mu}m$ CMOS process. The circuit for measuring temperature consists of PWM control circuit, VCO, counter and register. consisted The frequency of PWM control circuit is 23kHz and the frequency of VCO is 416kHz, 1MHz and 2MHz, respectively. The circuit operation is analyzed by using SPICE.

Design of a DC-DC Converter for Portable Device (휴대기기용 DC-DC 부스트 컨버터 집적회로설계)

  • Lee, Ja-kyeong;Song, Han-Jung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.2
    • /
    • pp.71-78
    • /
    • 2017
  • In This Paper, A DC-DC Boost Converter for Portable Device has been Proposed. The Converter Which is Operated with 1 MHz High Switching Frequency is Capable of Reducing Mounting Area of Passive Devices Such as Inductor and Capacitor, Consequently is Suitable for Portable Device. This Boost Converter Consists of a Power Stage and a Control Block and a Protect Block. Proposed DC-DC Boost Converter has been Designed a 0.18 um Magnachip CMOS Process Technology, we Examined Performances of the Fabricated Chip and Compared its Measured Results with SPICE Simulation Data. Simulation Results Show that the Output Voltage is 4.8 V in 3.3 V Input Voltage, Output Current 95 mA Which is Larger than 20~50 mA.

Design of A 3V CMOS Fully-Balanced Complementary Current-Mode Integrator (3V CMOS Fully-Balanced 상보형 전류모드 적분기 설계)

  • Lee, Geun-Ho;Bang, Jun-Ho;Cho, Seong-Ik;Kim, Dong-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.106-113
    • /
    • 1997
  • A 3V CMOS continuous-time fully-balanced integrator for low-voltage analog-digital mixed-mode signal processing is designed in this paper. The basic architecture of the designed fully-balanced integrator is complementary circuit which is composed of NMOS and PMOS transistor. And this complementary circuit can extend transconductance of an integrator. So. the unity gain frequency, pole and zero of integrator are increased by the extended transconductance. The SPICE simulation and small signal analysis results show that the UGF, pole and zero of the integrator is increased larger than those of the compared integrtors. The three-pole active low-pass filter is designed as a application circuit of the fully-balanced integrator, using 0.83V CMOS processing parameter.

  • PDF

A Cell-Network Type SC DC-DC Converter with Large Current Output

  • Eguchi, Kei;Ueno, Fumio;Zhu, Hongbing;Tabata, Toru;Tanoue, Takashi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1121-1124
    • /
    • 2002
  • In this paper, an IC realization of a cell-network type SC DC-DC converter is reported. To achieve small and low-cost realization, the converter is designed by using a 1.2 $\mu\textrm{m}$ CMOS technology. The CMOS implemented converter will be useful as a building block of various mobile equipments since step-up and step-down voltages can be provided at one time. Concerning the proposed DC-DC converter, SPICE simulatiorls are performed to investigate the characteristics of the circuit. The SPICE simulations show that, the efficiency of the simulated circuit is more than 95 %. From the layout design using a CAD tool, MAGIC, the VLSI chip is fabricated in the chip fabrication program of VLSI Design and Education Center(VDEC), the University of Tokyo with the collaboration by On-Semiconductor. The proposed circuit is integrable by a standard 1.2 $\mu\textrm{m}$ CMOS technology.

  • PDF

Design of A 3V CMOS Lowpass Filter Using the Improved Continuous-Time Fully-Differential Current-Mode Integrator (개선된 연속시간 Fully-Differential 전류모드 적분기를 이용한 3V CMOS 저역필터 설계)

  • 최규훈;방준호;조성익
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.685-695
    • /
    • 1997
  • In this paper, a new CMOS continuous-time fully-differential current-mode integrator is proposed as a basic building block of the low-voltage high frequency current-mode active filter. The proposed integrator is composed of the CMOS complementary circuit which can extend transconductance of an integrator. Therefore, the unity gain frequency which is determined by a small-signal transconductance and a MOSFET gate capacitance can be expanded by the complementary transconductance of the proposed integrator. And also the magnitude of pole and zero are increased. The unity gain frequency of the proposed integrator is increased about two times larger than that of the conventional continuous-time fully-differential integrator with NMOS-gm. These results are verified by the small signal analysis and the SPICE simulation. As an application circuit of the proposed fully-differential current-mode integrator, the three-pole Chebyshev lowpass filter is designed using 0.8.$\mu$m CMOS processing parameters. SPICE simulation predicts a 3-dB bandwidth of 148MHz and power dissipation of 4.3mW/pole for the three-pole filter with 3-V power supply.

  • PDF

Analysis of timing characteristics of interconnect circuits driven by a CMOS gate (CMOS 게이트에 의해서 구동되는 배선 회로의 타이밍 특성 분석)

  • 조경순;변영기
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.4
    • /
    • pp.21-29
    • /
    • 1998
  • As silicon geometry shrinks into deep submicron and the operating speed icreases, higher accuracy is required in the analysis of the propagation delays of the gates and interconnects in an ASIC. In this paper, the driving characteristics of a CMOS gate is represented by a gatedriver model, consisting of a linear resistor $R_{dr}$ and an independent ramp voltage source $V_{dr}$ . We drivered $R_{dr}$ and $V_{dr}$ as the functions of the timing data representing gate driving capability and an effective capacitance $C_{eff}$ reflecting resistance shielding effect by interconnet circuits. Through iterative applications of these equations and AWE algorithm, $R_{dr}$ , $V_{dr}$ and $C_{eff}$ are comuted simulataneously. then, the gate delay is decided by $C_{eff}$ and the interconnect circuit delay is determined by $R_{dr}$ and $V_{dr}$ . this process has been implemented as an ASIC timing analysis program written in C language and four real circuits were analyzed. In all cases, we found less than 5% of errors for both of gate andinterconnect circuit delays with a speedup factor ranging from a few tens to a few hundreds, compared to SPICE.SPICE.

  • PDF

A delay model for CMOS inverter (CMOS 인버터의 지연 시간 모델)

  • 김동욱;최태용;정병권
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.6
    • /
    • pp.11-21
    • /
    • 1997
  • The delay models for CMOS invertr presented so far predicted the delay time quite accurately whens input transition-time is very small. But the problem that the accuracy is inclined to decrease becomes apparent as input transition tiem increases. In this paper, a delay model for CMOS inverter is presented, which accuractely predicts the delay time even though input transition-time increases. To inverter must be included in modeling process because the main reason of inaccuracy as input transition tiem is the leakage current through the complementary MOS. For efficient modeling, this paper first models the MOSes with simple I-V charcteristic, with which both the pMOS and the nMOS are considered easily in calculating the inverter delay times. This resulting model needs few parameters and re-models each MOS effectively and simply evaluates output voltage to predict delay time, delay values obtained from this effectively and simply evaluates output voltage to predict delay time, delay values obtained from this model have been found to be within about 5% error rate of the SPICE results. The calculation time to predict the delay time with the model from this paper has the speed of more than 70times as fast as to the SPICE.

  • PDF