• Title/Summary/Keyword: Irrigation water withdrawal

Search Result 11, Processing Time 0.029 seconds

Sustainable Management of Irrigation Water Withdrawal in Major River Basins by Implementing the Irrigation Module of Community Land Model

  • Manas Ranjan Panda;Yeonjoo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.185-185
    • /
    • 2023
  • Agricultural water demand is considered as the major sector of water withdrawal due to irrigation. The majority part of the global agricultural field depends on various irrigation techniques. Therefore, a timely and sufficient supply of water is the most important requirement for agriculture. Irrigation is implemented in different ways in various land surface models, it can be modeled empirically based on observed irrigation rates or by calculating water supply and demand. Certain models can also calculate the irrigation demand as per the soil water deficit. In these implementations, irrigation is typically applied uniformly over the irrigated land regardless of crop types or irrigation techniques. Whereas, the latest version of Community Land Model (CLM) in the Community Terrestrial Systems Model (CTSM) uses a global distribution map of irrigation with 64 crop functional types (CFTs) to simulate the irrigation water demand. It can estimate irrigation water withdrawal from different sources and the amount or the areas irrigated with different irrigation techniques. Hence, we set up the model for the simulation period of 16 years from 2000 to 2015 to analyze the global irrigation demand at a spatial resolution of 1.9° × 2.5°. The simulated irrigation water demand is evaluated with the available observation data from FAO AQUASTAT database at the country scale. With the evaluated model, this study aims to suggest new sustainable scenarios for the ratios of irrigation water withdrawal, high depending on the withdrawal sources e.g. surface water and groundwater. With such scenarios, the CFT maps are considered as the determining factor for selecting the areas where the crop pattern can be altered for a sustainable irrigation water management depending on the available withdrawal sources. Overall, our study demonstrate that the scenarios for the future sustainable water resources management in terms of irrigation water withdrawal from the both the surface water and groundwater sources may overcome the excessive stress on exploiting the groundwater in major river basins globally.

  • PDF

Variation of water supply for instream flow from reservoirs with various magnifications of paddy irrigation area to watershed area (유역배율에 따른 저수지의 하천유지용수 공급량)

  • Noh, Jae-Kyoung;Lee, Jae-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.2
    • /
    • pp.331-341
    • /
    • 2011
  • To provide variation of water supply for instream flow from reservoirs with various magnifications of paddy irrigation area to watershed area, 8 reservoirs were selected to draw operation rule curve and to analyze water supplies from reservoirs. Reliability of 90% for supplying irrigation water from reservoir was able to maintain and instream flow water was able to be supplied only in the reservoir with magnification of paddy irrigation area to watershed area above 3. The more magnification of paddy irrigation area to watershed area increased, the more ratio of irrigation water to total water storage decreased, and the more ratio of instream flow water to total water storage increased. From the heightening 113 reservoirs in Korea, annual irrigation water was estimated to 1,146.05 $Mm^3$ in normal operation, 839.57 $Mm^3$ in withdrawal limited operation, and annual instream flow water was estimated to 149.68 $Mm^3$ in normal operation, 283.19 $Mm^3$ in withdrawal limited operation. It was concluded that withdrawal limited operation was followed to have the premise of saving irrigation water, more instream flow water was able to be supplied from reservoirs with high magnification of paddy irrigation area to watershed area.

Evaluation of Supplying Instream Flow by Operation Rule Curve for Heightening Irrigation Reservoir (이수관리곡선에 의한 증고저수지의 하천유지유량 공급 가능성 평가)

  • Lee, Jae-Nam;Noh, Jae-Kyoung
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.481-490
    • /
    • 2010
  • Baekgog reservoir is located in Jincheon county, Chungbuk province, of which full water levels will be heightened from EL. 100.1 m to EL. 102.1 m, and total storages from 21.75 $Mm^3$ to 26.67 $Mm^3$. The simulation for reservoir inflow was conducted by DAWAST model. The annual average irrigation water was estimated to 33.19 $Mm^3$ supplied to 2,975 ha and the instream flows could be allocated with 0.14 mm/d from October to April with annual average of 2.52 $Mm^3$. The operation rule curve was drawn using inflow, irrigation, and instream flow requirements data. The reservoir water storage was simulated on a daily basis in case of both normal and withdrawal limit operation. In case of normal operation, the annual average irrigation water supply increased from 31.95 $Mm^3$ to 33.32 $Mm^3$, the instream water supply from 2.40 $Mm^3$ to 2.44 $Mm^3$, the water storages from 15.74 $Mm^3$ to 19.88 $Mm^3$, and the water supply reliability from 77.3 % to 81.6 %. In case of operation with withdrawal limit, the amount of instream water supply was 2.52 $Mm^3$ from reservoir regardless of the condition while the water storage increased from 16.77 $Mm^3$ to 20.65 $Mm^3$. The irrigation water supply capacity was appropriate for the case of normal operation with 2 m heightened condition. The present instream water supply capacity was 35,000 $m^3$/d (6.86 $Mm^3$/y) while 42,000 $m^3$/d (8.36 $Mm^3$/y) in 2 m heightened condition in case of withdrawal limit operation.

Affecting Water Supply Capacity Followed by Allocating Flood Control Volume in Heightening Reservoir (홍수조절용량 설정에 따른 증고저수지의 용수공급능력 변화)

  • Noh, Jae-Kyoung
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.57-70
    • /
    • 2010
  • This study was performed to analyze the affect of water supply capacity followed by allocating flood control volume in heightening reservoir, of which Baekgog reservoir was selected as a case study in here. Baekgog reservoir is located in Jincheon county, Chungbuk province, of which full water level will be heightened from EL. 100. 1m to EL. 102.1m, and total storage from 21.75M $m^3$ to 26.67M $m^3$. Flood inflow with 200year frequency was estimated to 997 $m^3$/s in peak flow and 22.54M $m^3$ in total volume. Reservoir flood routing was conducted to determine flood limited water levels, which was determined to have scenarios such as EL 97-98-99m in periods of 6.21.-7.20., 7.21.-8.20., and 8.21.-9.20., respectively, EL 97-97-97m, EL 98-98-98m in present reservoir, and EL 99-100-101m, EL 99-99-99m, and EL 100-100-100m in heightened reservoir. Reservoir inflow was simulated by DAWAST model. Annual paddy irrigation requirement was estimated to 33.19M $m^3$ to 2,975ha. Instream flow was allocated to 0.14mm/d from October to April. Operation rule curve was drawn using inflow, irrigation and instream flow requirements data. In case of withdrawal limit reservoir operation using operation rule curve, reduction rates of annual irrigation supply before and after flood control by reservoir were 2.0~4.3% in present size and 1.5~3.6% in heightened size. Reliability on water supply was decreased from 77.3% to 63.6~68.2% in present size and from 81.6% to 72.7~79.5% in heightened size. And reduction rates of water storage at the end of year before and after flood control by reservoir were 7.3~16.5% in present size and 7.7~16.9% in heightened size. But water supplies were done without any water deficiency through withdrawal limit reservoir operation in spite of low flood regulating water level.

  • PDF

Assessment of Water Management Efficiencies for Irrigation Pumping Stations in the Han River and Nakdong River Basins (한강 및 낙동강 유역의 양수장 지구 물관리효율 평가)

  • Kim, Hyeon-Jun;Kim, Chul-Gyum;kim, Sung
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.23-32
    • /
    • 2003
  • The objective of this study is assessing water management efficiency using water withdrawals from rivers and water requirements for paddies. The water management efficiency was defined by the ratio of water requirements and water withdrawals. Water withdrawals were estimated using the operating times and pumping capacity of the pumping stations from 1992 to 1999 in the Han River and Nakdong River basins. Water requirements were estimated by adding the evapotranspiration of the crops and infiltrations in the irrigated area. Evapotranspiration from the paddies was calculated by the FAO modified Penman method with observed daily weather data. The monthly water management efficiency was analyzed for each pumping stations and the district offices of KARICO (Korea Agricultural and Rural Infrastructure Corporation). The efficiencies of 59 pumping stations in the Han River basin varied from 19% to 135%, and the average was 61%. The efficiencies of 146 pumping stations in the Nakdong River basin ranged from 17% to 190%, and the average was 72%. There were no good correlations between the water management efficiency and pump capacity or irrigated area, it showed that the water management efficiency was affected by the traditional water management practices rather than the scale of irrigation district.

Operation Rule Curve for Reservoir with Low Areal Ratio of Watershed to Downstream Paddy Field (유역배율이 작은 저수지의 이수관리방법)

  • Noh, Jae-Kyoung
    • KCID journal
    • /
    • v.18 no.1
    • /
    • pp.68-80
    • /
    • 2011
  • To provide a operation rule curve for reservoir with low ratio of watershed area to paddy field area, Duckyong reservoir with watershed area of $15.8km^2$ and paddy field area of 1,071ha was selected, in which 4 meters are being heightened and full water levels will be increased from EL.26.0m to EL.30.0m, total water storages from 365.6M $m^3$ to 708.0M $m^3$. There was no operation rule curve that satisfied over 90% reliability of water supply in reservoir with watershed area of 1.48 times of paddy field area. The differences between observed and simulated reservoir daily water storages were minimized to determine parameters for simulating reservoir inflow in case of paddy field area of 550ha from 1991 to 2010. A operation rule curve was drawn to have a maximum storage with total water storage, which was in paddy field area of 700ha with ratio of 2.3 between watershed area and paddy field area. This case showed that annual irrigation water supply was 668M $m^3$ and instream flow of 57M $m^3$, water supply reliability of 55.6% in normal operation, and annual irrigation water supply was 605M $m^3$ and instream flow of 38M $m^3$, water supply reliability of 95.6% in withdrawal limited operation. Water supply reliabilities showed 35.6% without flood regulation and 17.8% with flood regulation in existing reservoir before heightening.

  • PDF

Securing Inflows to Reservoir with Low Ratio of Watershed to Paddy Field Areas by Operating Outside Diversion Weir (유역외 보의 연계운영에 의한 유역배율이 작은 저수지의 유입량 확보 가능성)

  • Noh, Jae-Kyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.1
    • /
    • pp.17-28
    • /
    • 2011
  • This study was performed to ascertain the possibility of securing inflows to reservoir with low ratio of watershed to paddy field areas by outside diversion weir. The case of Maengdong reservoir and Samryong diversion weir was selected. Most of inflows to Maengdong reservoir with watershed area of $7.06\;km^2$ and total storage capacity of $1,269{\times}10^4\;m^3$ are filled with intake water from outside Samryong diversion weir. Only using water storage data in Maengdong reservoir from 1991 to 2009, the range of water intake in Samryong diversion weir to Maengdong reservoir was optimized to 0.135~30 mm/d, from which water intake to Maengdong reservoir was $1,672.9{\times}10^4\;m^3$ (70.1 %) and downstream outflow to Weonnam reservoir was $714.4{\times}10^4\;m^3$ (29.9 %). The parameters of DAWAST model for reservoir inflow were determined to UMAX of 313.8 mm, LMAX 20.3 mm, FC 136.8 mm, CP 0.018, and CE 0.007. Inflows to Maengdong reservoir were $427.1{\times}10^4\;m^3$ (20.3 %) from inside watershed, and $1,672.9{\times}10^4\;m^3$ (79.7 %) from outside. Paddy irrigation water requirements were estimated to $1,549{\times}10^4\;m^3$ on annual average. Operation rule curve was drawn by using daily inflow and irrigation requirement data. By securing the amount of inflow to Maengdong reservoir to about 80 % from outside Samryong diversion weir, water supply capacity for irrigation of $1,549{\times}10^4\;m^3/yr$ was analyzed to be enough. Additional water supplies for instream flow were analyzed to $1,412\;m^3/d$ in normal reservoir operation, $36,000\;m^3/d$ in withdrawal limit operation by operation rule curve from October to March of non irrigation period.

Growth and Yield Responses of Corn (Zea mays L.) as Affected by Growth Period and Irrigation Intensity

  • Nam, Hyo-Hoon;Seo, Myung-Chul;Cho, Hyun-Suk;Lee, Yun-Ho;Seo, Young-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.674-683
    • /
    • 2017
  • The frequency and intensity of soil moisture stress associated with climate change has increasing, and the stability of field crop cultivation has decreasing. This experiment was conducted to investigate the effect of soil moisture management method on growth and yield of corn. Soil moisture was managed at the grade of WSM (wet soil moisture, 34.0~42.9%), OSM (optimum soil moisture, 27.8~34.0%), DSM (dry soil moisture, 20.3~27.8%), and ESM (extreme dry moisture, 16.6~20.3%) during V8 (8th leaf stage)-VT (tasseling stage). After VT, irrigation was limited. The treated amount of irrigation was 54.1, 47.7, 44.0 and 34.5% of total water requirement, respectively. The potential evapotranspiration during the growing period was $3.29mm\;day^{-1}$, and upward movement of soil water was estimated by the AFKAE 0.5 model in the order of ESM, DSM, OSM, and WSM. We could confirm this phenomenon from actual observations. There was no significant difference in leaf characteristics, dry matter, and primary productivity depending on the level of soil moisture, but leaf development was delayed and dry weight decreased in DSM. However, dry weight and individual productivity of DSM increased after irrigation withdrawal compared to that of OSM. In DSM, ear yield and number of kernels per ear decreased, but water use efficiency and harvest index were higher than other treatments. Therefore, it is considered that the soil moisture is concentratedly managed before the V8 period, the V8-VT period is controlled within the range of 100 to 500 kPa (20.3~27.8%), and no additional irrigation is required after the VT.

Combined Effects of Groundwater Abstraction and Irrigation Reservoir on Streamflow (지하수 이용과 농업용 저수지가 하천유량에 미치는 복합 영향)

  • Kim, Nam Won;Lee, Jeongwoo;Chung, Il Moon;Lee, Min Ho
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.719-733
    • /
    • 2013
  • In this study, a watershed-based surface-water and groundwater integrated model, SWAT-MODFLOW was used to evaluate streamflow depletion induced by groundwater withdrawals and irrigation reservoirs for the Juksan-cheon watershed in South Korea. The streamflow responses to groundwater pumping and irrigation reservoirs were simulated under several different scenarios. The scenarios were (1) current pumping well withdrawals with reservoirs; (2) current pumping well withdrawals without reservoirs; (3) no pumping well withdrawals with reservoirs; (4) no pumping well withdrawals without reservoirs (natural condition). The simulated results indicated that the effects of groundwater pumping on streamflow depletion are a little more significant than those of irrigation reservoirs. Particularly, the groundwater withdrawals with irrigation reservoirs at current status (scenario 1) has induced the decrease of more than 20% in drought flow against the natural condition (scenario 4) at the outlet of the watershed. The specific drought flows through the main stream of Juksan-cheon watershed were simulated in order to assess the irrigation effects on downstream flows. It was found out that the specific drought flows are increasing as the distance from the reservoir increases due to the accumulation of the return flows to stream.

Effects of Irrigation Reservoirs and Groundwater Withdrawals on Streamflow for the Anseongcheon Upper Watershed (안성천 상류유역 하천유량에 미치는 농업용 저수지와 지하수 이용 영향 분석)

  • Lee, Jeongwoo;Kim, Nam Won;Chung, Il-Moon;Lee, Jeong Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.835-844
    • /
    • 2015
  • Streamflow responses to irrigation reservoirs and groundwater withdrawals were simulated using the integrated surface-water and groundwater model, SWAT-MODFLOW for the upstream watershed of the Gongdo station located in the Anseong stream. The simulated results indicated that the irrigation water supply from the Gosam and the Geumkwang reservoirs has caused the decrease of 31.2%, 82.5% in drought flows below the reservoirs, respectively, against the natural flow condition. While, at the outlet of the study watershed, the effects of the irrigation reservoirs were insignificant due to the delayed return flows with the decrease of 5.7% in drought flow. Both of the irrigation reservoirs and groundwater withdrawals have reduced the drought flows by 19.2% at the Gongdo station.