• Title/Summary/Keyword: Irrigation Standard

Search Result 135, Processing Time 0.034 seconds

Effect of Soil Water Stress on Yield and Quality of Korean Wheat

  • Han-yong Jeong;Yulim Kim;Chuloh Cho;Jinhee Park;Chon-Sik Kang;Jong-Min Ko;Jiyoung Shon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.62-62
    • /
    • 2022
  • Among annual precipitation in Korea (1306.3 mm), 54% of it falls intensively in summer, and only about 12.4% falls in April and May, when the water requirement of wheat is the highest. Korean wheat also could be damaged by soil water excess stress as frozen soil thaws after winter (late Feb-Mar). This study was conducted to evaluate effect of soil water stress on yield and quality of Korean wheat cultivar 'Saegeumgang'. Soil water treatments consisted of 4 treatments; water excess treatment in tilling stage (3.23-3.30), drought treatment in ripening stage (Apr-Jun), irrigation treatment in ripening stage (5.10) and standard condition. There was no significant difference between the treatment conditions for culm length, and the number of spike number was the highest in the order of irrigation in the ripening period (951)> standard cultivation (876)> excess water treatment in the tilling stage (752)> drought treatment in the ripening stage (767/m2). Test weight and Thousand grain weight were 548g/L and 22. lg respectively, which were lower than other treatments, and there was no significant difference between the other treatments. Abortive grain was 5.4kg/10a which was lower than other treatment, and there was no significant difference between the other treatment than other treatments. In drought treatment, protein content was 11.9% which is the highest among all treatments, and SDS-sedimentation value was 27.2ml under drought treatment which was very low compared to other treatments. Therefore, wheat yield and spike number were decreased in excess water condition at tilling stage and drought condition at ripening stage. Furthermore, wheat quality became deteriorate in drought condition at ripening stage.

  • PDF

A Study on the Leakage Interception Work in the Irrigation Canal Founding on the Sandy Gravel or the Porous Soil (모래자갈과 누수성 토질을 기반으로하는 용수로의 누수방지에 대한 연구)

  • 강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.2
    • /
    • pp.1965-1970
    • /
    • 1970
  • The experiment was carried out in order to improve the leakage stopping work in the irrigation canal founding on the porous soil. But the experiment had many problems to be studied more owing to the insufficient time and facilities. The results obtained are summarized as follows; 1. Polyethylene film is estimated not to make strength decrease owing to buring in the subsoil, but to make owing to the sunlight. 2. Coated nylon shows the tendency to deteriorate strength when it is buried in the earth or exposed to the sun for long time, but leakage is all but impermeability generally. 3. Leakage loss rates for one hour show some differences in the canal to be full with water in accordance with operating methods, that is, the clay lining section is 12.6%, the coated nylon lining section is 1.7%, the polyethylene film lining section is 1.3%, respectively. 4. Leakage quantities per wetted perimeter unit area show $3.556cc/cm^2/hr$. in the clay lining section, $1.574cc/cm^2/hr$. in the coated nylon section, $0.695cc/cm^2/hr$. in the polyethylene film lining section, respectively. 5. When the construction fund make the clay lining section as a standard, the polyethylene film section is 92.1%, the coated nylon section is 174.2%, respectively. But, the unit cost of execution may be low when the polyethylene film and the coated nylon will enable to mass-produce for the purpose of execution.

  • PDF

Development of Storage Management System for Small Dams (소규모 댐의 저수관리 시스템 개발)

  • Kim, Phil-Shik;Kim, Sun-Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.15-25
    • /
    • 2005
  • Ninety tow percent of over 1,800 gate controlled dams in Korea are classified as small dams. The primary purpose of these small dams is to supply irrigation water. Therefore, while large dams can store as much as 80 percent of precipitation and thus are efficient to control flood, small dams are often lack of flood control function resulting in increased susceptibility drought and flood events. The purpose of this study is to develope a storage management model for irrigation dams occupying the largest portion of small dams. The proposed Storage Management Model (STMM) can be applied to the Seongju dam for efficient management. Besides, the operation standard is capable of analyzing additional available water, considering water demand and supply conditions of watershed realistically. And the model can improve the flood control capacity and water utilization efficiency by the flexible operation of storage space. Consequently, if the small dams are managed by the proposed Storage management model, it is possible to maximize water resources securance and minimize drought and flood damages.

Optimizing Rules for Releasing Environmental Water in Enlarged Agricultural Reservoirs (둑높이기 농업용저수지의 환경용수 방류기준 설정)

  • Yoo, Seung-Hwan;Lee, Sang-Hyun;Choi, Jin-Yong;Park, Tae-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.17-24
    • /
    • 2012
  • The main purposes of the agricultural reservoir enlargement (ARE) project are to secure water supply reliability (WSR) for agriculture and to release environmental water during dry seasons. In this study, an operational rule that will simultaneously satisfy both the above issues was developed. Initial amount of water storage at the beginning of non-irrigation season (1st October) was divided into 3 stages, and the target level of water storage at the beginning of irrigation seasons (1st April) was set up. Required operational curves and release amounts were estimated based on the stages and target water levels. To evaluate the applicability of this rule, the amount of water released for environmental purposes and WSRs were analyzed for three reservoirs (Unam, Jangchi and Topjeong). The ratio between annual amount of release and additional amount of water storage were 1.6, 1.85, and 4.1 for the Unam, Jangchi, Tapjeong reservoirs, respectively. Also, the WSRs of all reservoirs were found to become higher than when the design standard was applied. Therefore, it is considered that the proposed rule is more suitable for the enlarged agricultural reservoirs operation as it satisfies the WSRs while securing the environmental water release.

Property of Water Environment and Evaluation of Zooplankton as Predators for the Control of Algal Bloom in the Agricultural Reservoir (농업용저수지의 녹조제어를 위한 수환경 특성과 포식성 천적생물의 분리 및 효과분석)

  • Nam, Gui-Sook;Song, Young-Hee;Lee, Eui-Haeng;Hong, Dae-Byuk;Han, Myung-Soo
    • KCID journal
    • /
    • v.18 no.1
    • /
    • pp.33-43
    • /
    • 2011
  • Jundae reservoir has basin area of 234ha, average depth of 3.77m and total storage of $619{\times}10^3m^3$, and is located in Dangin-gun, Chungcheongnam-do. The water quality of Jundae reservoir exceeded the IV grade of water quality standard as available for irrigation water in COD, TN, TP, Chl-a. COD and Chl-a were higher in spring season, because the algal bloom by phytoplankton increased. And the algal blooms in October by inflow non-point pollution during summer rainy season. The most dominant zooplankton was rotifers during study period at all stations. Dominant species were Keratella cochlearis, Polyarthra spp., and Trichocerca spp. We successfully established 2 isolated clone cultures as predator. One is Rotifer, Euchlanis sp. and another is cladocerans, Bosmina sp. To test the removal rate of 2 cultures against Microcystis aeruginosa, we inoculated Euchlanis sp. and Bosmina sp. separately when the abundance reached at $1.0{\times}10^6$cells/ml. Euchlanis sp. removed M. aeruginosa around 98.9% and Bosmina sp. removed it around 98.4%. They are useful grazers for controling algae blooms, Euchlanis sp. and Bosmina sp. feeding on M. aeruginosa highly.

  • PDF

PROBLEMS IN OSTEOGENIC DIFFERENTIATION OF RAT BONE MARROW STROMAL CELLS (쥐의 골수로부터 추출한 줄기세포를 이용한 조골세포로의 분화 유도과정에서 나타난 문제점에 관한 분석 연구)

  • Kim, In-Sook;Cho, Tae-Hyung;Zhang, Yu-Lian;Lee, Kyu-Back;Park, Yong-Doo;Rho, In-Sub;Weber, F.;Lee, Jong-Ho;Kim, Myung-Jin;Hwang, Soon-Jung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • This study was aimed to characterize osteogenic potential of rat bone marrow stromal cells (BMSC) isolated with standard flushing method and investigate the plasticity of transdifferentiation between osteoblastic and adipocytic lineage of cultured BMSC. Unlike aspiration method in human, rat bone marrow was extracted by means of irrigation with culture media that elevates the possibility of co-extraction of committed osteoprogenitor, or preosteoblast or other progenitor cells of several types present inside bone marrow. The cultured stromal cells showed high ALP activity which is representative marker of osteoblast without any treatment. Osteogenic inducers such as Dex and BMP-2 were examined for the evaluation of their effect on osteogenic and adipocytic differentiation of stromal cells, because they function as osteoinductive agent in stromal cells, but simultaneously induce adipogenic differentiation. Osteogenic differentiation was evaluated by measuring alkaline phosphatase activity or mRNA expression of osteoblast markers such as osteopontin, bone sialoprotein, collagen type I and CbfaI, and in vitro matrix mineralization by von Kossa staining. Oil red staining method was used to detect adipocyte and adipocytic marker, aP2 and $PPAR{\gamma}2$ expression was examined using RT-PCR. It can be supposed that irrigation procedure resulted in high portion of already differentiation-committed osteoprogenitor cell showing elevated ALP activity and strong mineralization only under the supplement of $100{\mu}M$ ascorbic 2-phosphate and 10mM ${\beta}$-glycerophosphate without any treatment of osteogenic inducers such as Dex and BMP-2. Dex and BMP-2 seemed to transdifferentiate osteoprogenitor cells having high ALP activity into adipocytes temporarily, but continuous treatment redifferentiated into osteoblast and developed in vitro matrix mineralization. This property must be considered either in tissue engineering for bone regeneration, or in research of characterization of osteogenic differentiation, with rat BMSC isolated by the standard irrigation method.

Development for Eco-Design of Hydraulic Structures based on Web-based Information System (친환경 정비공법 선정 지원을 위한 웹기반 정보시스템 구축)

  • Cho, Young-Kweon;Kim, Kwan-Ho;Kim, Han-Joong;Choi, Soo-Myung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.1
    • /
    • pp.95-106
    • /
    • 2008
  • Eco-friendly material and implementation methods have become important along with the existing standardized maintenance concept for the irrigation and flood control. However, the intrinsic function of the hydraulic structure is water supply and disaster prevention. Therefore, the material and work methods should be considered both eco-friendliness, durability and safety which are prerequisite elements to maintain the engineering function. In this study eco-friendly material and work methods would be classified into the vegetation based system, eco-friendly concrete system and stone-material system according to the characteristics of material. The quality standard for durability followed KS specification and related regulations. The quality standard for safety and eco-friendliness was set after literature review, and the database was developed using the standard. The structure applicable to onsite - the eco-friendly material and work method were classified based on the function and material of the hydraulic structure. Finally, database has been established for convenient management and selection of the proper material and work method. The eco-friendly material and work method could be searched easily for the convenience of the users, and the web-based data system has been developed for continuous registration of the material and work methods to be developed in the future.

Analysis of Moisture Characteristics in Rockwool Slabs using Time Domain Reflectometry (TDR) Sensors and Their Applications to Paprika Cultivation (TDR 센서를 이용한 암면 슬라브 수분 특성 분석 및 파프리카 재배의 적용 예)

  • Park, Jong-Seok;Tait, NguyenHuy;An, Tae-In;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.238-243
    • /
    • 2009
  • To investigate the characteristics of moisture content (MC), moisture distribution and starting point of drainage in a rockwool slab culture, time domain reflectometry (TDR) sensors were used in a drip irrigation system. MC values ($0{\sim}100%$) measured by TDR sensors in a slab were compared to those by loadcells. Seventy two seedlings of paprika (Capsicum annuum L.) were cultured for $5{\sim}6$ months in a green-house and the starting point of irrigation was determined by the average value of three TDR sensors which were inserted diagonally across the slabs under the plants. MCs as a standard for starting point of irrigation by TDR were determined with 40%, 50%, and 60%. Distribution of MCs in a slab measured with five TDR sensors equally spaced from two irrigation points were not much different when the MC in the slab increased from zero to saturation point. The saturated MCs in the slab were presented at $58{\sim}65%$ and the drain was started when the MC became around $50{\sim}55%$. At the saturated MC in the slab, TDR sensors presented 100% but the values from the loadcell showed 90% at the same time. However, measurement errors between two methods for MC remarkably decreased with a decrease in the MC in a slab. Especially when the MC was maintaining below 60%, the errors between TDR and loadcell methods for measuring MC in the rock-wool slab were less than 5%. There were no significant differences in number of fruits and fresh and dry weights of fruits when they were cultured under the different MC conditions with three irrigation regimes (40%, 50%, and 60%). These results indicated that the MC control by TDR sensors in a rock-wool based paprika culture can be suggested as a method to determine the starting point of irrigation for a soilless culture system.

Good Agriculture Practice (GAP) and Sustainable Resource Utilization of Chinese Materia Medico

  • Wenyuan Gao;Wei Jia;Hongquan Duan;Luqi Huang;Xiaohe Xiao;Peigen Xiao;Peak, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.103-107
    • /
    • 2002
  • The Good Agriculture Practice (GAP) program, being established in China, is an optimal way for the sustainable utilization of the medicinal plant and animal resources. Most frequently used Chinese materia medica will be mainly produced from the GAP bases in the future. To assure the successful operation of GAP program, standard operating procedure (SOP) should be implemented for specific plants or animals. Both GAP and SOP include the requirements in many aspects from the ecological environment of cultivation place, germplasm and varieties, seedling and transplant, fertilization, irrigation, and field care, to harvest and process, package, transport and storage. As a complex system, GAP demands strong commitment from the pharmaceutical industry, local administrative involvement, long term R&D support, and years of time of development before a satisfactory result can be achieved.

Assessing pollutants' migration through saturated soil column

  • Smita Bhushan Patil;Hemant Sharad Chore;Vishwas Abhimanyu Sawant
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.95-106
    • /
    • 2023
  • In the developing country like India, groundwater is the main sources for household, irrigation and industrial use. Its contamination poses hydro-geological and environmental concern. The hazardous waste sites such as landfills can lead to contamination of ground water. The contaminants existing at such sites can eventually find ingress down through the soil and into the groundwater in case of leakage. It is necessary to understand the process of migration of pollutants through sub-surface porous medium for avoiding health risks. On this backdrop, the present paper investigates the behavior of pollutants' migration through porous media. The laboratory experiments were carried out on a soil-column model that represents porous media. Two different types of soils (standard sand and red soil) were considered as the media. Further, two different solutes, i.e., non-reactive and reactive, were used. The experimental results are simulated through numerical modeling. The percentage variation in the experimental and numerical results is found to be in the range of 0.75- 11.23 % and 0.84 - 1.26% in case of standard sand and red soil, respectively. While a close agreement is observed in most of the breakthrough curves obtained experimentally and numerically, good agreement is seen in either result in one case.