• Title/Summary/Keyword: Irrigation Area

Search Result 597, Processing Time 0.032 seconds

A Study on the Research of Actual Condition and the Analysis for the Weir to Develope the Agricnltural Irrigation Water (around Gangwon-Do) (농업용수 개발을 위한 보의 실태조사와 그 분석 (강원도를 중심으로))

  • Choi, Ye-Hwan;Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4614-4625
    • /
    • 1978
  • The construction of the equipment of water utilization has been developed since the ancient Korea period, 1906 in order to develope and modernize the agriculture. As the results, 83% of total paddy field area, 1,268,949.8 ha has developed into the irrigated paddy field, and the rest of area, 17% has remained nonirrigated paddy field (due to the data of the statistics of 1975). The ratio of the irrigated paddy field area among the total weir was marked 13.14% (area, 137,926.3 ha) and the third grade of total irrigated paddy field in accordance with the facilities of water utilization. In case of Gangwon-Do, the 44.18 percentage of the total irrigated paddy field, 51,057.2ha has been and pointed out first grade. As the results, we found out the following articles : 1. The total weir, 1,641 that sumed concrete weir 647 and conventional weir 967 has been constructed and has irrigated the 44.l8% of total irrigated paddy field of Gangwon-Do. 2. These weirs have been public possession of those villages to be 96.1 percentage of total weir and was controled by them. 3. Those weirs that were constructed across tributary (first, secondary and third tributary) at vallies (elevation 100∼1,000m) have marked that 45 percentage of total number of catchment area has 100∼1,000 ha, and 70 percentage of total number of basin area has been below 10 ha and has constructed about 5 of step-shape. 4. The construction of most weirs has became generally about 50m length, about 1m height. 5. The 80 percentage of newly constructed concrete weir has aged below 10 years. It seemed that 79 percentage of conventional weir has aged over 20 years and 41% of contructed weir has needed to be improved quickly. 6. If privious weirs, 296 will constructed newly, they can irrigate 3,600.8 ha of paddy field and 45.8% of total irrigated paddy field will have been and will contribute to the production of much rice.

  • PDF

A Study on the Cultivation Processes and Settlement Developments on the Mangyoung River Valley (만경강유역의 개간과정과 취락형성발달에 관한 연구)

  • NamGoong, Bong
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.2
    • /
    • pp.37-87
    • /
    • 1997
  • As a results of researches on the cultivation processes and settlement developments on the Mangyoung river valley as a whole could be have four 'Space-Time Continuity' through a [Origin-Destination] theory model. On a initial phases of cultivation, the cultivation process has been begun at mountain slopes and tributory plains in upper part of river-basin from Koryo Dynasty to early Chosun Dynasty. At first, indigenous peasants burned forests on the mountain slopes for making 'dryfield' for a cereal crops. Following population increase more stable food supply is necessary facets of life inducing a change production method into a 'wetfield' in tributory plains matching the population increase. First sedentary agriculture maybe initiated at this mountain slopes and tributory plains on upper part of river basin through a burning cultivation methods. Mountain slopes and tributory plains are become a Origin area in cultivation processes. It expanded from up to down through the valleys with 'a bits of land' fashion in a steady pace like a terraced fields expanded with bit by bit of land to downward. They expanded their land to the middle part of river basin in mid period of Chosun Dynasty with dike construction techniques on the river bank. Lower part of river cultivated with embankment building techniques in 1920s and then naturally expanded to the tidal marshes on the estuaries and river inlets of coastal areas. 'Pioneer fringes' are consolidated at there in modern times. Changes in landscapes are appeared it's own characters with each periods of time. Followings are results of study through the Mangyoung river valley as a whole. (1) Mountain slopes and tributory plains on the upper part of river are cultivated 'dryfields' by indigenous peasants with Burning cultivation methods at first and developed sedentary settlements at the edges of mountain slopes and on the river terrace near the fields. They formed a kind of 'periphery-located cluster type' of settlement. This type of settlement are become a prominant type in upper part of river basin. 'Dryfields' has been changed into a 'wetfields' at the narrow tributory plains by increasing population pressure in later time. These wetfields are supplied water by Weir and Ponds Irrigation System(제언수리방법). Streams on the tributory plains has been attracted wetfields besides of it and formed a [water+land] complex on it. 'Wetfields' are expanded from up to downward with a terraced land pattern(adder like pattern, 붕전) according to the gradient of valley. These periphery located settlements are formed a intimate ecological linkage with several sets of surroundings. Inner villages are expanded to Outer villages according to the expansion of arable lands into downward. (2) Mountain slopes and tributory plains expanded its territory to the alluvial deposited plains on the middle part of river valley with a urgent need of new land by population increase. This part of alluvial plains are cultivated mainly in mid period of Chosun Dynasty. Irrigation methods are changed into a Dike Construction Irrigation method(천방수리방법) for the control of floods. It has a trend to change the subjectives of cultivation from community-oriented one who constructed Bochang along tributories making rice paddies to local government authorities who could be gather large sums of capitals, techniques and labours for the big dike construction affairs. Settlements are advanced in the midst of plains avoiding friction of distances and formed a 'Centrallocated cluster type' of settlements. There occured a hierarchical structures of settlements in ranks and sizes according merits of water supply and transportation convenience at the broad plains. Big towns are developed at there. It strengthened a more prominant [water+land] complex along the canals. Ecological linkages between settlements and surroundings are shaded out into a tiny one in this area. (3) It is very necessary to get a modern technology of flood control at the rivers that have a large volume of water and broad width. The alluvial plains are remained in a wilderness phase until a technical level reached a large artificial levee construction ability that could protect the arable land from flood. Until that time on most of alluvial land at the lower part of river are remained a wilderness of overgrown with reeds in lacks of techniques to build a large-scale artificial levee along the riverbank. Cultivation processes are progressed in a large scale one by Japanese agricultural companies with [River Rennovation Project] of central government in 1920s. Large scale artificial levees are constructed along the riverbank. Subjectives of cultivation are changed from Korean peasants to Japanese agricultural companies and Korean peasants fell down as a tenant in a colonial situation of that time in Korea. They could not have any voices in planning of spatial structure and decreased their role in planning. Newly cultivated lands are reflected company's intensions, objectives and perspectives for achieving their goals for the sake of colonial power. Newly cultivated lands are planned into a regular Rectangular Block settings of rice paddies and implanted a large scale Bureaucratic-oriented Irrigation System on the cultivated plains. Every settlements are located in the midst of rice paddies with a Central located Cluster type of settlements. [water+land] complex along the canal system are more strengthened. Cultivated space has a characters of [I-IT] landscapes. (4) Artificial levees are connected into a coastal emnankment for a reclamation of broad tidal marshes on the estuaries and inlets of rivers in the colonial times. Subjectives of reclamation are enlarged into a big agricultural companies that could be acted a role as a big cultivator. After that time on most of reclamation project of tidal marshes are controlled by these agricultural companies formed by mostly Japanese capitalists. Reclaimed lands on the estuaries and river inlets are under hands of agricultural companies and all the spatial structures are formed by their intensions, objectives and perspectives. They constructed a Unit Farming Area for the sake of companies. Spatial structures are planned in a regular one with broad arable land for the rice production of rectangular blocks, regular canal systems and tank reservoir for the irrigation water supply into reclaimed lands. There developed a 'Central-located linear type' of settlements in midst of reclaimed land. These settlements are settled in a detail program upon this newly reclaimed land at once with a master plan and they have planned patterns in their distribution, building materials, location, and form. Ecological linkage between Newly settled settlemrnts and its surroundings are lost its colours and became a more artificial one by human-centred environment. [I-IT] landscapes are become more prominant. This region is a destination area of [Origin-Destination] theory model and formed a 'Pioneer Fringe'. It is a kind of pioneer front that could advance or retreat discontinously by physical conditions and socio-cultural conditions of that region.

  • PDF

Creation of the naturally favorable waterside space in the arrangement of an arable land by the residents participation (주민참여에 의한 경지정리지구내의 자연친화적 수변공간조성)

  • 김선주;양용석
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.185-191
    • /
    • 1999
  • In a mean time, arrangement of a arable land is lead by government with same way, same type. It means that there are no considering on characteristic features of region and aspect of ecological environment that can experess its natural charactersistics. Because whenever there is needed to be arranging , most of structure are made by a ward office from a desgin to a execution so that cause many public resentment and durability is very short by a inappropriateness its maintenance. The purpose of this study is divided into four parts ; First, to form the naturally favorable waterside spaces by performing the basic water controlling funtions of the irrigation channel and the drainage channel. Second, to provide the meeting place of the residents and to restrore the ecological system by means of the formation of the naturally favorable waterside spaces. Third, to lead to the optimal design and maintenance that residents want by inviting the residents to participate at the begining stage of planning. A district of this study is located on Songsam(13-14 zone), Samseung-Lee Ganam-Meon Yeoujoo-Gun Jyonggi Province and a length of section is 420m. This study came up with the following results. First, estabished the type of design and area of the area by means of the collected residents' opinions. Seconds, changed the straight line water channel already designed to the curve water channel . Third changed the structure materials of the steel concrete structure to the natural materials . Fourth, change dthe design by area for the ecological system and the meeting place of the residents. Fifth, divided the whole area into fourth area in order to satisfy the residents' requests.

  • PDF

Estimation Model for Simplification and Validation of Soil Water Characteristics Curve on Volcanic Ash Soil in Subtropical Area in Korea (난지권 화산회토양의 토색별 토양수분 특성곡선 및 단일화 추정모형)

  • Hur, Seung-Oh;Moon, Kyung-Hwan;Jung, Kang-Ho;Ha, Sang-Keun;Song, Kwan-Cheol;Lim, Han-Cheol;Kim, Geong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.329-333
    • /
    • 2006
  • Most of volcanic ash soils in South Korea are distributed in Jeju province which is an island placed on southern part of Korea and has steep slope mountain area. There are many soils containing high contents of organic matter (OM) derived from volcanic ash in Jejudo, also. Therefore, irrigation and drainage in volcanic ash soil different with general soil which has low OM content have to be applied with another management way, but studies searching appropriate methods for them are set on insufficient situation because the area of volcanic ash soil in South Korea is only 1.3% (130,000ha). This study was conducted for analysis of soil water content and irrigation quantity appropriate for crops cultivated in volcanic ash soil with high OM content. Although soils with different soil color have the same soil texture, soil water characteristics curve by soil color showed the difference of water retention capability by OM content. But, this characteristics classified with soil color could be unified by scaling technique with similitude analysis method which get dimensionless water content using a present water content, a residual water content and saturated water content (or water content at 10kPa). A relation of gravimetric soil water content (GSWC) and dimensionless water content by the results showed a form of power function. The dimensionless water content (DWC) express a relative saturation degree of present water content. This was also expressed by van Genuchten model which describe the relation between relative saturation degrees and matric potentials. These results on soil water characteristics curve (SWCC) of volcanic ash soil will be the basic of irrigation plan in area having high organic contents into soil.

Hydrologic Modeling for Agricultural Reservoir Watersheds Using the COMFARM (COMFARM을 이용한 농업용저수지 유역 수문 모델링)

  • Song, Jung-Hun;Park, Jihoon;Kim, Kyeung;Ryu, Jeong Hoon;Jun, Sang Min;Kim, Jin-Taek;Jang, Taeil;Song, Inhong;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.71-80
    • /
    • 2016
  • The component-based modeling framework for agricultural water-resources management (COMFARM) is a user-friendly, highly interoperable, lightweight modeling framework that supports the development of watershed-specific domain components. The objective of this study was to evaluate the suitability of the COMFARM for the design and creation of a component-based modeling system of agricultural reservoir watersheds. A case study that focused on a particular modeling system was conducted on a watershed that includes the Daehwa and Dangwol serial irrigation reservoirs. The hydrologic modeling system for the study area was constructed with linkable components, including the modified Tank, an agricultural water supply and drainage model, and a reservoir water balance model. The model parameters were each calibrated for two years, based on observed reservoir water levels. The simulated results were in good agreement with the observed data. In addition, the applicability of the COMFARM was evaluated for regions where reservoir outflows, including not only spillway release but also return flow by irrigation water supply, substantially affect the downstream river discharge. The COMFARM could help to develop effective water-management measures by allowing the construction of a modeling system and evaluation of multiple operational scenarios customized for a specific watershed.

Observation and Evaluation of Zooplankton Community Characteristics in the Petite Ponds (Dumbeong) for Irrigation: A Case Study in Goseong Region of South Korea (남부지역 소형 관개용 못들에서의(둠벙) 동물플랑크톤 군집특성 조사 및 평가)

  • Kim, Hang-Ah;Choi, Jong-Yoon;Kim, Seong-Gi;Do, Yuno;Joo, Gea-Jae;Kim, Dong-Kyun;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.490-498
    • /
    • 2012
  • This study demonstrates the investigation of zooplankton communities (e.g. rotifers, cladocerans and copepods) and environmentally related driving factors (e.g. elevation, area size, water depth, types of dike construction, and bottom substrates). We hypothesized that zooplankton community structure and composition would be influenced by ambient driving forces in different scales of the irrigation ponds (Dumbeong). A total of 66 zooplankton species/groups (56 rotifers, 9 cladocerans, 1 copepods) were found and identified at 45 Dumbeong of Goseong region (i.e. Goseong-gun) in 2011. The rotifers occupied 84.9% of the total zooplankton abundance. We could categorize a clear separation of zooplankton communities into 4 different patterns based on cluster analysis. Zooplankton diversities in Dumbeongs were lower than those in natural ponds or wetlands. In addition, community structure of zooplankton was also simpler and had a broken stick distribution based on SHE analysis. Species composition in each Dumbeong was not significantly discriminated each other. The result of canonical correspondence analysis (CCA) pinpointed that significant influential variables upon zooplankton community were dissolved oxygen percent saturation, pH, and Dumbeong's material. This study indicated that morphological type of the Dumbeong and its water quality could determine the community structure of zooplankton. Furthermore, the connectivity between ambient habitats and materials could be necessary to be rigorously considered in respect to producing the Dumbeongs to subsidize alternative habitats for wetland ecosystem in freshwater landscape.

Demonstration of system to combat desertification using renewable energy (신재생에너지를 이용한 사막화 방지 시스템 실증 (몽골))

  • Kim, Man-Il;Lee, Seung-Hun;Whang, Jung-Hun;Cho, Woon-Sic;Park, Moon-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.73-76
    • /
    • 2009
  • Generally, wind or solar power system is operated as a stand-alone power system, the efficiency of which could be higher by designing wind-solar combined system considering average wind speed and solar radiation of the desert region, Mongolia. This system is designed to generate electricity for power users and pumps the ground water for irrigation using deep well pump. The ground water can be used for farming or forestation where there is no or little irrigation system. In connection with this study, a renewable energy park, Green Eco Energy Park, was developed at about 50km east of Ulaanbaatar. 3 sets of 10kW wind power generator and 70 kW of solar power module were installed there. The electricity generated from the system is used to on-site office building and deep well pump for ground water pumping. A 10kW stand-alone solar pumping system, which has no rechargeable battery system, is installed to pump the ground water with the amount of generated power. The ground water is stored in 3 artificial ponds and then it is used for raising nursery tree and farming. The purpose of this study is to provide a possible energy solution to desert regions where there is no or little power system. The system also supply power to ground water pump, and the water can be used for farming and forestation, which will also be a solution of preventing desertification or spreading of desert area.

  • PDF

Development of the Estimation System for Agricultural Water Demand (농업용수 수요량 산정 시스템 개발)

  • 이광야;김선주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • To estimate agricultural water demand, many factors such as weather, crops, soil, cultivation method, crop coefficient and cultivation area, etc. must be considered. But it is not easy to estimate water demand in consideration of these factors, which are variable according to growth stage and regional environment. This study provides estimation system for agricultural water demand(ESAD) in order to estimate water demand easily and accurately, and arranges all factors needed for water demand estimation. This study identifies the application of estimation system for agricultural water demand with the data observed in the other studies, and analyzes nationwide agricultural water demand. The results are as follows. 1) The practice of different rice cultivation in the paddy field resulted in different water demands. Water depth and infiltration ratio in paddy are the most important factors to estimate water demand. The water depths in paddy simulated by ESAD is very similar to the observed ones. 2) Water demand of upland crops varies with the crops, soil, etc.. Effective rainfall estimated by daily routing of soil moisture varies according to the crops, soil, and effective soil zone(root depth). As crop root become grown, effective rainfall and an amount of irrigation water has been increased. 3) The current unit water demand of upland crops applied as 500mm or 550mm to estimate water demand does not reflect the differences caused by the crops, regional surrounding, weather condition, etc. Results from ESAD for the estimation of water demand of upland crops show that ESAD can simulate the actual field conditions reasonably because it simulates the actual irrigation practices with the daily routing of soil moisture.

  • PDF

A successful province of agriculturalwater-saving: Gansu

  • Bin, Jiang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.194-194
    • /
    • 2016
  • Gansu, located in the northwestern region, is a typical agricultural province of arid, semiarid in China. The shortage of water resources is the biggest obstacle of Gansu Province's development, and the dry farming water-saving is the eternal theme of Gansu agricultural sustainable development. In recent years, intensify reform in Gansu, has walked out a successful way in the agricultural water-saving. Using the integrated river basin governance as opportunity, the total water-using quantity was regarded as rigidity to retrain, distributed to counties (districts), irrigated areas, towns, associations, groups step by step. Agricultural water price was substantially increased, with the surface water price from about $0.1RMB/m^3$ to more than $0.2 RMB/m^3$, and the ground water from zero to more than $0.1RMB/m^3$. Simultaneously, the difference water prices and over-quota water progression price markup were carried out. The transaction of water rights was encouraged to impel the peasant to establish the consciousness of saving-water. The regulatory documents were formulated to standardize the scope, condition, mode, program etc. of agriculture water-rights transaction, to guarantees the transaction of water rights is carries out in order. The pattern of farming was optimized and adjusted, reducing the high water-consumption crop, increasing economic crops with high benefit and low water-consumption, developing industrialized agricultures such as green house. The relative engineering and measuring facility were comprehensively improved, with the anti-seepage of canal system and the enforcement of dynamo-electric well, developing high-efficient water-saving irrigation and overall metering facilities. The water fine-grained management has realized, and obvious water-saving effect has obtained: water-using rate in the irrigation area by river water has brought up to 0.57 from 0.52, and by well water up to 0.84 from 0.76. Although the water price has increased, the proportion that the water rate expenditure accounted for the cost lasts decline, and the farmers' income has gone up. The peasants express, the used water is few, and it is few to till land, but the income is many, and life is better.

  • PDF

Development of Lora Wireless Network Based Water Supply Control System for Bare Ground Agriculture (자가 충전 및 장거리 무선 네트워크를 지원하는 노지 농작물 관수 자동화 시스템 설계)

  • Joo, Jong-Yui;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1373-1378
    • /
    • 2018
  • In order to solve the problems such as reduction of agriculture population, aging and declining of grain self sufficiency rate, agriculture ICT convergence technology utilizing IoT technology is actively being developed. Agricultural ICT technology only concentrates on facility houses, and there is no automated control system in the field of cultivation. In this paper, we propose an irrigation control system that automatically controls the solenoid valves and water pumps in a large area with Lora wireless communication. The proposed system does not require a separate power source by using a small solar panel, and it is very convenient to install and operate supporting wireless auto setup by plug-and-play method. Therefore, it is expected that it will contribute to the reduction of labor force, quality of agricultural products, and productivity improvement.