• Title/Summary/Keyword: Irrigation Area

Search Result 597, Processing Time 0.028 seconds

The Evaluation of Pollutant Removal Efficiencies by Sedimentation Basin Types constructed at the Inlets of Irrigation Reservoirs (농업용 저수지 내 침강지의 설치유형에 따른 수질정화효율 평가)

  • Jang, Jeong-Ryeol;Choi, Sun-Hwa;Nam, Gui-Sook;Kwun, Soon-Kuk
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.665-674
    • /
    • 2005
  • The aim of this study is to evaluate 3 types of sedimentation basins: dredging, shield skirt and auxiliary dam, constructed at inlets of two irrigation reservoir and to estimate the most beneficial type and fitted size, SAR(surface to area ratio), for pollutant removal efficiency(RE). For this, RE of major water quality items and change of physicochemical properties in sediments before and post construction of sedimentation basin(SB) were investigated. RE depended on SB types, water quality items and survey times with wide range from $-87\%$ to $92\%$. Long term overall removal efficiency by ROC(regression of concentration) method were $18\%$ in dredging, $29\%$ in shield skirt and $42\%$ in auxiliary dam type. There was a change of physicochemical properties in sediments at auxiliary dam type, while a slight change at dredging and shield skirt type. In comparison to RE, SAR and hydraulic retention time at 3 types of SB, auxiliary dam type was the most beneficial one. Thus, it is recommended that SB would be constructed in completely separated structure from water body of a reservoir with SAR ranged from 0.7 to $1.0\%.$

Influence of Drought and High Temperature on the Physiological Response and Yield in Hot Pepper (토양 건조 스트레스와 기온상승에 의한 고추의 생리반응 및 생산량 변화)

  • Lee, Sang Gyu;Lee, Hee Ju;Kim, Sung Kyeom;Mun, Bo heum;Lee, Jin Hyoung;Lee, Hee Su;Do, Kyung Ran
    • Journal of Environmental Science International
    • /
    • v.27 no.4
    • /
    • pp.251-259
    • /
    • 2018
  • This study was conducted to determine the effects of combination of air temperature and soil water content on the growth, physiological disorder rate, and yield of hot peppers. The study was carried out in a typical plastic house (open on one side and with ventilation fans on the other side), which was maintained with gradient air temperature (maximum difference in air temperature: $6^{\circ}C$). The deficit irrigation (DI) treatment commenced 65 days after transplanting. The height of plant and fresh and dry weights of the stem increased at high air temperature (ambient + $6^{\circ}C$, extreme high temperature; EHT). Furthermore, the leaf area decreased significantly with the DI treatment. There were no significant differences in the stem diameter, number of branches, and fresh and dry weights of the leaves among all the treatments. The net photosynthesis rate of the full irrigation (FI) treatment was higher than that of the DI treatment. The photosynthesis rate at ambient air temperature was $19.7{\mu}mol\;CO_2m^{-2}{\cdot}s^{-1}$, the highest among all the treatments; however, the photosynthesis rate of the EHT treatment decreased by 60% ($12.3{\mu}mol\;CO_2m^{-2}{\cdot}s^{-1}$). Additionally, the formation of guard cells in the leaf was abnormal with the EHT treatment, and there was a decrease in translocation efficiency. The effects of air temperature treatment were more pronounced on the physiological disorder rate and yield. The physiological disorder rate of the EHT treatment was the highest under the DI treatment condition. The yield of the AFI (ambient air temperature with full irrigation) treatment was 3,771 kg/10a, the highest among all the treatments; however, the yield of the EHT treatment with DI and FI was 1,282 and 1,327 kg/10a, respectively. These results indicate that growth and physiological disorder rate improved with the EHT treatment; however, there was a decrease in yield. Furthermore, the formation of guard cells was abnormal and malfunctional.

Effect of Cold Water Irrigation on the Growth and Yield Characters of Rice Varieties at Mid-mountains Area (중산간지에서 냉수처리가 벼 품종의 생육과 수량에 미치는 영향)

  • Park, Dae-Gyu;Jung, Do-Cheol;Kim, Kyung-Min;Park, Gyu-Hwan
    • Korean Journal of Plant Resources
    • /
    • v.19 no.4
    • /
    • pp.497-508
    • /
    • 2006
  • This study was conducted to obtain the basic information on rice cold damage and relationship to be connected with cold tolerance. The 20 rice varieties were screened to cold tolerance under low water temperature condition. The water gradient were controlled to $17^{\circ}C$ at the inlet and $21^{\circ}C$ at outlet of screening field. In the relationship between cold water irrigation and growth of rice varieties, effect on medium maturing cultivars were higher than early maturing cultivars. In relationship of shorting of culm length and panicle exsertion, culm length and panicle exsertion showed positive correlation. Yield of cultivars and culm length and percent of fertile grain showed positive correlation. However, heading date presented negative correlation. In the early maturing cultivars, except 'Kumobyeo', all cultivars range of discoloration value (1-3) was resistant. In the medium maturing cultivars, 'Donghaebyeo' was resistant in both the seedling stage whereas 'Hwajinbyeo' was resistant only in tiller stage. Cold water irrigation reduced spikelet number per panicle and percent of filled grain. Unhulled rice yield was increased according to water temperature gradient from inlet to outlet. There was varietal differences in head rice recovery by cold water treatment.

Selection of drought tolerant plants through physiological indicators (생리적 인자 분석을 통한 내건성 식물 선발)

  • Im, Hyeon Jeong;Song, Hyeon Jin;Jeong, Mi Jin;Seo, Yeong Rong;Kim, Hak Gon;Park, Dong Jin;Yang, Woo Hyeong;Kim, Yong Duck;Choi, Myung Suk
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.33-43
    • /
    • 2016
  • Drought tolerant species from 26 Korean native plants were selected using different physiological indicators. Arundinella hirta, Solanum carolinense and Carpesium divaricatum were withered after 8days of the stopping of irrigation. Plants except Kummerowia striata, Lespedeza cuneata and Ulmus parvifolia were withered in over 80% at 9-10days of the irrigation stopping. K. striata was withered after 10days, and L. cuneata and U. parvifolia were withered in over 90% after 11days of the stopping of irrigation. As stopping experiment of irrigation, A. hirta, S. carolinense, C. divaricatum, K. striata, L. cuneata and U. parvifolia were proved to be drought tolerant species. Among those plant species, transpiration rate of Cassia mimosoides var. nomame Makino was high as 0.042ml/㎠·4hr. However, unit transpiration rate of U. parvifolia and L. cuneata were 0.005 and 0.010ml/㎠·4hr, respectively. In testing of physiological indicators, leaf area and transpiration rate were different among plant species. Unit transpiration rate of U. parvifolia was lower compared with other plant species. L. cuneata, U. parvifolia, Kummerowia striata, Arundinella hirta and C. divaricatum were high in relative water content and low in relative water loss. As this results, L. cuneata and U. parvifolia. were identified as drought tolerant species.

Screening and Identification of Salt Tolerant Peanut (Arachis hypogaea L) Genotypes under Salinity Stress

  • Rizwana B.Syed Nabi;Eunyoung Oh;Myoung Hee Lee;Sungup Kim;Kwang-Soo Cho;Jeongeun Lee;Jung In Kim;Eunsoo Lee;Min Young Kim;Sang Woo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.113-113
    • /
    • 2022
  • Salinity in surface waters is increasing around the world. Many factors, including increased water extraction, poor irrigation management, and sea-level rise, contribute to this change, and posing a threat to plant development and agricultural production. Seeds exposed to high salinity, have a lower probability of germinating and various physiological and biochemical effects. Salinity stress affects more than 20% of agricultural land and about 50% of irrigated land. In the current study, our objective is to identify the salt-tolerant peanut (Arachis hypogaea L.) Korean genotypes under salinity stress. Thus, two-week-old 19 diverse peanut Korean genotypes were exposed to 10 days of salinity (150 mM NaCl) stress. Based on the growth attributes investigation, Baekjung and Ahwon genotypes showed significantly higher shoot lengths compared to control plants. Whereas, the Sinpalwang genotype exhibited a significantly positive response for plant growth and reduced wilting symptoms compared to other genotypes. This study was able to find out peanut tolerant and sensitive genotypes for salt stress. These results may provide a good template for further salt-tolerant peanut cultivar improvement programs. Identified diverse salt-responsive genotypes can be utilized as source material in Korean breeding schemes for peanut crop improvement for salt and other abiotic stress tolerance.

  • PDF

A Study for Sedimentation in Reservoir -on district of Chin Young- (저수지의 퇴사에 관한 연구 -진양지구를 중심으로-)

  • 류시창;민병향
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.3
    • /
    • pp.3840-3847
    • /
    • 1975
  • With 30 excisting reservoirs in the Chin-Young area, the Sedimentation of the reservoirs has been calculated by comparing the present capacity with the original value, which revealed its reduced reservoir capacity. The reservoirs has a total drainage area of 3l4l ha, with a total capacity of 43.23 ha-m, and are short of water supply due to reduction of reservoir capacity, Annual sedimentation in the reservoir is relation to the drainage area, the mean of annual rainfall, and the slop of drainage area. The results of obtained from the investigation are summarized as follows: (1) A Sediment deposition rate is high, being about 7.03㎥/ha of drainage area, and resulting in the overage decrease of reservoir capacity by 16.1%. This high rate of deposition coule be mainly attributed to the serve denudation of forests due to disorderly cuttings of tree. (2) An average unit storageof 116mm as the time of initial construction is decreased to 95.6mm at present. This phenomena cause a greater storage of irrigation water, sinceit was assumed that original storage quantity itself was already in short. (3) A sediment deposition rate as a relation to the capacity of unit drainge area is as follow: Qs=1.27(C/A)0.6 and standard deviation is 185.5㎥/$\textrm{km}^2$/year. (4) A sediment deposition rate as a relation to the mean of annual rainfall is as follow: Qs=21.9p10.5 and the standard deviation is 364.8㎥/$\textrm{km}^2$/year. (5) A sediment deposition rate as a relation to the mean slop of drainage area is follow: Qs=39.6S0.75 and the standard deviation is 190.2㎥/$\textrm{km}^2$/year (6) Asediment deposition rate as a relation to the drainage area, mean of rainfall, mean of slope of drainage area is: Log Qs=0.197+0.108LogA-6.72LogP+2.20LogS and the standard deviation is 92.4㎥/$\textrm{km}^2$/year

  • PDF

A Quantitative Study on the Effect of Temperature Control by a Shade Tree and the Lawn Area (식물의 온도 완화효과에 관한 기초적 연구)

  • 안계복;김기선
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.14 no.1
    • /
    • pp.1-13
    • /
    • 1986
  • The purpose of this study is to investigate the effect of temperature control by a shade tree and the lawn area. In this investigation, we find out that artificial-lawn, concerte, and exposed soil are more higher temperature than covered with plant materials. The results of the measurement may to summerized as follows; 1) Low-temperature effects of zoysia japonica is more controlled by condition of growth than leaf length of grass. Surface temperature make 0.7$^{\circ}C$ difference between long grass (15cm), and short grass (5cm), but make 5$^{\circ}C$ difference between good growth grass (230/10$\textrm{cm}^2$) and bad growth grass (80/10$\textrm{cm}^2$). 2) The surface temperature of the lawn area is 40.5$^{\circ}C$ lower on a maxinum than that of the artificial lawn (July 28, 1985). During the day of summer, shade area under the shade tree is 0.9$^{\circ}C$ lower then lawn area surface temperature, 6.9$^{\circ}C$ lower than bad growth lawn, 10.3$^{\circ}C$ lower than exposed soil, and 18$^{\circ}C$ lower than concrete surface temperature. 3) Natural irrigation effect on the surface temperature fluctuation. But this effect is changed by compositions of ground materials and time-lapse. 4) Sunny day is more effective than cloud day. 5) In summer season, surface temperature make a difference compare to temperature of 0.5-1.5m height from ground : Surface temperature is 3.4$^{\circ}C$ lower at the lawn area (11 a.m.), 4.2$^{\circ}C$ lower at the shade area the shade tree, 12.7$^{\circ}C$ higher at the concrete area (3p.m.), 38.8$^{\circ}C$ higher at the artificial lawn (2p.m.) 6) According to compositions of ground materials and season have specific vertical temperature distribution curve. 7) In summer season, temperature distribution of 0.5-1.5m hight at the shade tree is 4.8-5.7$^{\circ}C$ lower than concrete area (noon-3p.m.)

  • PDF

Breeding and Production Research Direction for Soybean Self-Sufficiency Improvement in Korea

  • Jee-Yeon Ko;Beom-Kyu Kang;Jeong-Hyun Seo;Jun-Hoi Kim;Su-Vin Heo;Man-Soo Choi;Jae-Bok Hwang ;Choon-Song Kim;Myeong-Gyu Oh
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.23-23
    • /
    • 2022
  • Recently, soybean production and market price are unstable, even if demand of soybean is maintained. Diverse conditions such as climate change, a decrease in rural population, and consuming affect food industry. In this situation, food security is soaring as important key-word again, and MAFRA is promoting policies for improving soybean self-sufficiency with the goal of 40% until 2030. The point of policy is to extend a production and stabilize a demand for soybean with supporting large-scale soybean paddy-field complex. According to the background, soybean breeding and production research in NICS are proceeded with three parts. First, production improvement with soybean cultivation land enlargement and high-yield cultivar development. Various growth period soybean cultivars for double cropping, irrigation management technologies in paddy field, and hyper-yield and specific-region adaptable cultivar development. Second, reduction of production expense with mechanized cultivation and digital-based field management technologies. Third, consumer-friendly and high quality soybeans with high protein cultivar for alternative protein usage and high food process-ability for soy milk, tofu, soybean sprouts, and grain usage. Each part need to be combined and advanced to improve soybean industry and soybean self-sufficiency.

  • PDF

The Research of Storage Capacity & Sedimentation of Reservoirs in HONAM Province (호남지방에 저수지의 매몰상황과 저수량에 관한 조사연구(농학계))

  • 이창구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.2
    • /
    • pp.2262-2275
    • /
    • 1971
  • Fourteenes rervoirs maintained by the local land improvement associations in the province of Chullabuk-Do and 20 reservoir maintained by thos in the province of Chullanam-Do, were surveyed in connection with a correction between storage capacity and sediment deposit. In addition to this survey, 3,347 of small reservoir, that lie scattered around in the above-mentioned two provinces were investigated by using existing two provinces were investigated by using existing records pertaining to storage capacity in the office of City and country, respectively. According to this investigation the following comclusions are derived. 1. A sediment deposition rate is high, being about $10.63m^3/ha$ of drainage area, and resulting in the average decreasc of storage capaity by 27.5%. This high rate of deposition coule be mainly attributed to the serve denudation of forests due to disorderly cuttings of trees. Easpecially, in small reservoir, an original average design storage depth of 197mm in irrigation water depth is decreased to about 140mm. 2. An average unit storage depth of 325.6mm as the time of initial construction is decreased to 226mm at present. This phenomena causes a greater shortage irrigation water, since it was assumed that original storage quantity was already in short. 3. Generally speaking, seepage rates through dam abutment intakepipe, etc, are high due to insufficient maintenance and management of reservoir. 4. It is recommended that sediment deposit should be dredged when a reservoir is dry in drought. 5. Farmers usually waste excessive irrigation water. 6. Water saving methods should be practiced by applying only necessary water for growing stage of rice. 7. In are as where water defficiency for irrigation is severe, a soil moisture content should be kept at about 70% by applying water once in several days. 8. Tube wells should be provided so as to exploit ground water and subsurface current below stream bed as much as possible. 9. If an intake weir was constructed, a water collection well should be built for the use in drought. 10. Water conservation should be forced by converting devastated forests contained in the drainage area of reservoir to protected forests so as to take priority of yrefor estation, gully control, the prohibition of disorderly cutting of trees, etc. 11. Collective rice nurseries should be adopted, and it should be recommended that irrigation water for rice nurseries is supplied by farmer themselves. 12. Sediment desposit in reservoir should be thoroughly dreged so as to secure a original design storage capacity. 13. The structure of overflow weir should be automatic so as to freely control flood level and not to increase dam height.

  • PDF

A Study on the Daily Probability of Rainfall in the Taegu Area according to the Theory of Probaility (대구지방(大邱地方)의 확률일우량(確率日雨量)에 관(關)한 연구(硏究))

  • Kim, Young Ki;Na, In Yup
    • Economic and Environmental Geology
    • /
    • v.4 no.4
    • /
    • pp.225-234
    • /
    • 1971
  • With the advance of civilization and steadily increasing population rivalry and competition for the use of the sewage, culverts, farm irrigation and control of various types of flood discharge have developed and will be come more and more keen in the future. The author has tried to calculated a formula that could adjust these conflicts and bring about proper solutions for many problems arising in connection with these conditions. The purpose of this study is to find out effective sewage, culvert, drainage, farm irrigation, flood discharge and other engineering needs in the Taegu area. If demands expand further a new formula will have to be calculated. For the above the author estimated methods of control for the probable expected rainfall using a formula based on data collected over a long period of time. The formula is determined on the basis of the maximum daily rainfall data from 1921 to 1971 in the Taegu area. 1. Iwai methods shows a highly significant correlation among the variations of Hazen, Thomas, Gumbel methods and logarithmic normal distribution. 2. This study obtained the following major formula: ${\log}(x-2.6)=0.241{\xi}+1.92049{\cdots}{\cdots}$(I.M) by using the relation $F(x)=\frac{1}{\sqrt{\pi}}{\int}_{-{\infty}}^{\xi}e^{-{\xi}^2}d{\xi}$. ${\xi}=a{\log}_{10}\(\frac{x+b}{x_0+b}\)$ ($-b<x<{\infty}$) ${\log}(x_0+b)=2.0448$ $\frac{1}{a}=\sqrt{\frac{2N}{N-1}}S_x=0.1954$. $b=\frac{1}{m}\sum\limits_{i=1}^{m}b_s=-2.6$ $S_x=\sqrt{\frac{1}{N}\sum\limits^N_{i=1}\{{\log}(x_i+b)\}^2-\{{\log}(x_0+b)\}^2}=0.169$ This formule may be advantageously applicable to the estimation of flood discharge, sewage, culverts and drainage in the Taegu area. Notation for general terms has been denoted by the following. Other notations for general terms was used as needed. $W_{(x)}$ : probability of occurranec, $W_{(x)}=\int_{x}^{\infty}f_{(n)}dx$ $S_{(x)}$ : probability of noneoccurrance. $S_{(x)}=\int_{-\infty}^{x}f_(x)dx=1-W_{(x)}$ T : Return period $T=\frac{1}{nW_{(x)}}$ or $T=\frac{1}{nS_{(x)}}$ $W_n$ : Hazen plot $W_n=\frac{2n-1}{2N}$ $F_n=1-W_x=1-\(\frac{2n-1}{2N}\)$ n : Number of observation (annual maximum series) P : Probability $P=\frac{N!}{{t!}(N-t)}F{_i}^{N-t}(1-F_i)^t$ $F_n$ : Thomas plot $F_n=\(1-\frac{n}{N+1}\)$ N : Total number of sample size $X_l$ : $X_s$ : maximum, minumum value of total number of sample size.

  • PDF