• Title/Summary/Keyword: Irregular component

Search Result 108, Processing Time 0.023 seconds

A Refinement of Point Forecast Using Dependency Structure in Irregualr Component of BOK-X12-ARIMA

  • Hwang, S.Y.;Yang, S.K.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.141-147
    • /
    • 2006
  • BOK-X12-ARIMA has been developed by the Bank of Korea in order to accomodate special features such as lunar effect, labor day and election effect which are intrinsic in Korean seasonal time series. Irregular component resulting from BOK-X12-ARIMA is usually treated as white noise time series. If this shows dependency structure, it may be advisable to incorporate dependency in irregular component into prediction. This article illustrates how to refine point forecast using dependency structure in irregular component.

  • PDF

On the Calculation of Irregular Wave Reflection from Perforated-Wall Caisson Breakwaters Using a Regular Wave Model (규칙파 모델을 이용한 유공케이슨 방파제로부터의 불규칙파 반사율 산정에 대하여)

  • 서경덕;손상영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.11-20
    • /
    • 2003
  • In this paper we examine several methods tor calculating the reflection of irregular waves from a perforated-wall caisson breakwater using a regular wave model. The first method is to approximate the irregular waves as a regular wave whose height and period are the same as the root-mean-squared wave height and significant wave period, respectively, of the irregular waves. The second is to use the regular wave model, repeatedly, for each frequency component of the irregular wave spectrum. The wave period is determined according to the frequency of the component wave, and the root-mean-squared wave height is used for all the frequencies. The third method is the same as the second one except that the wave height corresponding to the energy of each component wave is used. Comparison with experimental data from previous authors shows the second method is the most adequate, giving reasonable agreement in both frequency-averaged reflection coefficients and reflected wave spectra.

A Study on the Evaluation of Irregular Disturbances to Automatic Steering System of Fishing Boat in Waves (파랑줄을 항행하는 어선의 자동조타시스템에 작용하는 불규칙 외한 추정에 관한 연구)

  • 이경우
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.165-173
    • /
    • 1998
  • When an automatic course-keeping is concerned, as is quite popular in modem navigation, the closed-loop steering system consists of autopilot device, power unit (or telemotor unit), steering gear, magnetic or gyro compass and ship dynamics. In order to estimate automatic steering system of ships in open seas. we need to know the characteristics of each component of the system, and also to know the characteristics of disturbance to ship dynamics. In this paper, I provide calculation method of imposing irregular disturbance to autopilot navigation system of the ship in open seas, and also show calculation examples about fishing boat. The disturbance consists of the irregular wave and the fluctuating component of wind. Finally, The disturbances are calculated in terms of equivalent yaw angular velocity. Each spectrum and time history of disturbance are reasonably evaluated.

  • PDF

Application of a Regular Wave Model to Calculation of Irregular Wave Reflection from Perforated-Wall Caisson Breakwaters (불규칙파의 유공 케이슨 방파제로부터의 반사율 산정시 규칙파 모델 적용)

  • Suh Kyung Duck;Son Sang Young
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.205-208
    • /
    • 2002
  • Numerous studies have been performed to develop an analytical model that can predict the reflection of regular or irregular waves from a perforated-wall caisson breakwater. Though such irregular wave models as Suh et at. (2001) become available, regular wave models are still in extensive use because of their simplicity. In the present study, using the regular wave model of Fuggazza and Natale(1992), the reflection of irregular waves from a perforated-wall caisson breakwater was calculated in several different methods. First, the regular wave model was re-validated by the hydraulic model tests. Though the model somewhat over-predicted the reflection coefficients at larger values and under-predicted them at smaller values, overall agreement was pretty good between calculation and measurement. Then, the regular wave model was applied to calculate the irregular wave reflection in the experiments of Suh et at.(2001) and Bennett et al. (1992). In applying the regular wave model to irregular wave reflection, several different methods were used. The results showed that it is the most reasonable to use the regular wave model repeatedly for each frequency component of the irregular wave specuum with the root-mean-squared wave height for all the frequencies .

  • PDF

Component deformation-based seismic design method for RC structure and engineering application

  • Han, Xiaolei;Huang, Difang;Ji, Jing;Lin, Jinyue
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.575-588
    • /
    • 2019
  • Seismic design method based on bearing capacity has been widely adopted in building codes around the world, however, damage and collapse state of structure under strong earthquake can not be reflected accurately. This paper aims to present a deformation-based seismic design method based on the research of RC component deformation index limit, which combines with the feature of Chinese building codes. In the proposed method, building performance is divided into five levels and components are classified into three types according to their importance. Five specific design approaches, namely, "Elastic Design", "Unyielding Design", "Limit Design", "Minimum Section Design" and "Deformation Assessment", are defined and used in different scenarios to prove whether the seismic performance objectives are attained. For the components which exhibit ductile failure, deformation of components under strong earthquake are obtained quantitatively in order to identify the damage state of the components. For the components which present brittle shear failure, their performance is guaranteed by bearing capacity. As a case study, seismic design of an extremely irregular twin-tower high rise building was carried out according to the proposed method. The results evidenced that the damage and anti-collapse ability of structure were estimated and controlled by both deformation and bearing capacity.

A Study on the Evaluation of Automatic Steering System of Ships in Folowing Seas (추사파중을 항행하는 선박의 자동조타 시스템 평가에 관한 연구)

  • 이경우;손경호
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.4
    • /
    • pp.407-415
    • /
    • 2001
  • In the present study, irregular disturbances to ship dynamics is proposed, where irregular disturbances implying irregular wave and the fluctuating component of wind for the evaluation of automatic steering system of ship in following seas. Prediction method based on the principle of linear superposition. Irregular wave disturbances in following seas is calculated by frequency variation method. The mathematical model of each element of an automatic steering system is derived, which takes account of a few non-linear mechanisms. PD(Proportional-Derivative) controller and low-pass filter with a weather adjustment are adopted to modelling the characteristics of an autopilot. Performance index is introduced from the viewpoint of energy saving, which derived from the concept of energy loss on ship propulsion. Finally, the present methods are applied to two typical types of ship ; an ore carrier and a fishing boat. The various effects of control constants of autopilot on propulsive energy loss are investigated

  • PDF

Evaluation of Irregular Disturbances to Ships in Autopilot Navigation (자동조타로써 항행하는 선박에 작용하는 불규칙 외란 추정법에 관한 고찰)

  • 이경우;손경호;김진형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1995.04a
    • /
    • pp.65-92
    • /
    • 1995
  • The final aim of our research project is a study on assessment of automatic steering system of ships in open seas. In order to achieve this aim we need to know the characteristics of each component of the system and also to know the characteristics of disturbance to ship dynamcis. In this paper we provide calculation method of irregular disturbance to ships in autopilot navigation in open seas and also show calculation examples about two kinds of ship ore carrier and fishing boat. The disturbance consists of irregular wave and random wind, The disturbance is calculated as equivalent yaw angular velocity. Each spectrum and time history of disturbance are reasonably evaluated. Further investigation concerning to performance index of autopilot system and energy loss related to automatic course keeping will be dealt with in another paper,

  • PDF

Evaluation of Irregular Disturbances to Ships in Autopilot Navigation (자동조타로써 항행하는 선박에 작용하는 불규칙 외란 추정법에 관한 고찰)

  • 손경호;이경우;김진형
    • Journal of the Korean Institute of Navigation
    • /
    • v.19 no.2
    • /
    • pp.1-12
    • /
    • 1995
  • The final aim of our research project is a study on assessment of automatic steering system of ships in open seas. In order to achieve this aim, we need to know the characteristics of each component of the system, and also to know the characteristics of disturbance to ship dynamics. In this paper, we provide calculation method of irregular disturbance to ships in autopilot navigation in open seas, and also show calculation examples about two kinds of ship, ore carrier and fishing boat. The disturbance consists of irregular wave and random wind. The disturbance is calculated as equivalent yaw angular velocity. Each spectrum and time history of disturbance are reasonably evaluated. Further investigation concerning to performance index of autopilot system and energy loss related to automatic course keeping, will be dealt with in another paper.

  • PDF

Numerical Simulation of Longshore Current due to Random Sea Waves (불규칙파에 의한 연안류의 수치계산)

  • 권정곤;양윤모
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.2
    • /
    • pp.72-82
    • /
    • 1992
  • To accurately estimate nearshore current in shallow water regions. it is necessary to investigate the irregular wave transformation characteristics and radiation stress produced by random sea waves. This research is to investigate the application or the individual wave Analysis Method. the Component Wave Analysis Method and Representative Wave Analysis Method in the shallow water region. These methods were estimated by wave shallowing transformation when the waves propagate from deep water to shallow water region b)r generating regular waves, two component waves and irregular waves (Bretschneider-Mitsuyasu type). That is, the Indivisual Wave Analysis Method is to investigate from the viewpoint of shallow water transformation of wave statistical characteristics and their zero-down-crossing waves (wave height period and wave celerity). And the component Wave Analysis Method is to investigate from the view point of shallow water transformation of basic frequency component wave and their interference frequency component wave. In addition, this research is to compare the measured mean water level elevation with the calculated one from radiation stress of irreguar waves that is assumed in the three methods above.

  • PDF

Numerical Simulation of Irregular Waves Over a Shoal Using Parabolic Wave Model (포물형 파랑모형을 이용한 수중천퇴상 불규칙파의 수치모의)

  • 윤성범;이정욱;연영진;최병호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.158-168
    • /
    • 2001
  • A numerical model based on the wide-angle parabolic approximation equation is developed for the accurate simulation of the directional spreading and partial breaking of irregular waves. This model disintegrates the irregular waves into a series of monochromatic wave components, and the simultaneous calculations are made for each wave component. Then, the computed wave components are superposed to get the wave height of irregular waves. To consider the partial breaking of irregular waves in the computation the amount of energy dissipation due to breaking is estimated using the superposed wave height. The accuracy of the developed model is tested by comparing the numerical results with the experimental measurements reported earlier. In the case of non-breaking waves a considerable accuracy of the model is observed for both regular and irregular waves. On the contrary it is found that the accuracy is significantly degenerated for the case of breaking waves. Some analyses for the accuracy degeneration are presented.

  • PDF