• Title/Summary/Keyword: Irradiation swelling

Search Result 110, Processing Time 0.027 seconds

Hydrogen Bonding Effect on γ-Ray Irradiated Poly(vinyl alcohol) Hydrogels in Different Drying Conditions

  • Gwon, Hui-Jeong;Jo, Sun Young;Park, Eun Ji;Shin, Young Min;Choi, Jong-Bae;Park, Jong-Seok;Lim, Youn-Mook;Nho, Young-Chang;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.89-94
    • /
    • 2012
  • Three-dimensional network hydrogels were prepared by ${\gamma}$-irradiation of aqueous solutions of poly(vinyl alcohol) (PVA) and glycerol (Gly). Oven-drying was used to measure the gel fraction (G), hydration (H) or swelling behavior (S) of the prepared hydrogels. This study made a hypothesis that hydrogen bonds due to addition of glycerol and change of dry states such as freeze-drying (FD), room-drying (RD) and oven-drying (OD) acts on the G, H, and S. Interesting results on the hydrogen bonding effect in the prepared hydrogels are monitored at different drying conditions. The FD samples have a higher G values with increase in glycerol content as compared with the OD and RD samples. The formation of strong hydrogen bonding network among Gly molecules and hydrogel matrix was considered as the main driving force, resulting in the changes in the G, H, and S of the hydrogels under different drying conditions.

Thermo-mechanical coupling behavior analysis for a U-10Mo/Al monolithic fuel assembly

  • Mao, Xiaoxiao;Jian, Xiaobin;Wang, Haoyu;Zhang, Jingyu;Zhang, Jibin;Yan, Feng;Wei, Hongyang;Ding, Shurong;Li, Yuanming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2937-2952
    • /
    • 2021
  • A typical three-dimensional finite element model for a fuel assembly is established, which is composed of 16 monolithic U-10Mo fuel plates and Al alloy frame. The distribution and evolution results of temperature, displacement and stresses/strains in all the parts are numerically obtained and analyzed with a self-developed code of FUELTM. The simulation results indicate that (1) the out-of-plane displacements of Al alloy side plates are mainly attributed to the bending deformations; (2) enhanced out-of-plane displacements appear in fuel plates adjacent to the outside Al plates, which results from the occurred bending deformations due to the applied constraints of outside Al plates; (3) an intense interaction of fuel foil with the cladding occurs near the foil edge, which appears more heavily in the fuel plates adjacent to the outside Al plates. The maximum first principal stresses in the fuel foil are similar for all the fuel plates and appear near the fuel foil edge; while, the through-thickness creep strains of fuel foil in the fuel plate near the central region of fuel assembly are larger, and the induced creep damage might weaken the fuel skeleton strength and raise the fuel failure risk.

Superior Vena Cava Syndrome -2 Bypass Graft Cases- (상공정맥 증후군 -Dacron & Nylon 환치수술 2예-)

  • 김정석
    • Journal of Chest Surgery
    • /
    • v.2 no.1
    • /
    • pp.65-72
    • /
    • 1969
  • Superior Vena Cava Syndrome: Dacron and Nylon graft between the left innominate vein and the right atrial appendage. Two cases with typical superior vena cave syndrome treated by by-pass graft between the left innominate vein and the right atrial apepndage were presented. One of them was a 58 year old farmer who suffered from marked swelling of the neck and upper half of body, the other was a 50 years old government employee who had acutely progressive symptoms of superior vena cave obstruction. Both of cases revealed that [1] cubitel venous pressure was markedly increased. [2] tumors were noted in the posterior mediastinum by laminography. [3] preoperative cavogram showed the occlusion of superior vena cava and marked collaterals. Dacron and Nylon graft were inserted between the left innominate vein and the right atrial appendage. Postoperatively, the symptoms were relieved markedly, showing edema free face and decreased cubital venous pressure. Postoperative cavogram showed patent graft. Histologically the first case was diagnosed as squamous cell carcinoma and the second as undifferentiated carcinoma, originated probably from bronchus. Total doses of 3150 r X-ray irradiation and 5000 mg of 5-FU were administered in each cases. The first case expired 11 months postoperatively without recurrence of superior vena cave obstruction symptom and the second case is living now without obstruction signs, 4 months after by-pass operation.

  • PDF

Albumin Release from Biodegradable Hydrogels Composed of Dextran and Poly(Ethylene Glycol) Macromer

  • Kim, In-Sook;Jeong, Young-Il;Kim, Do-Hoon;Lee, Yun-Ho;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • v.24 no.1
    • /
    • pp.69-73
    • /
    • 2001
  • Biodegradable hydrogels based on glycidyl methacrylate dextran (CMD) and dimethacrylate poly(ethylene glycol) (DMP) were proposed for colon-specific drug delivery. GMD was synthesized by coupling of glycidyl methacylate with dextran in the presence of 4-(N, N-dimethylamino)pyridine (DMAP) using dimethylsulfoxide as a solvent. Methacrylate-terminated poly (ethylene glycol) (PEG) macromer was prepared by the reaction of PEG with methacryloyl chloride. CMD/DMP hydrogels were prepared by radical polymerization of phosphate buffer solution (0.1 M, pH 7.4) of GMD and DMP using ammonium peroxydisulfate (APS) and UV as initiating system. The synthetic GMD, DMP and GMD/DMP hydrogels were characterized by fourier transform infrared (FT-lR) spectroscopy. The FITC-albumin loaded hydrogels were prepared by adding FITC-albumin solution before UV irradiation. Swelling capacity of GMD/DMP hydrogels was controlled not only by molecular weight of dextran, but also by incorporation ratio of DMP Degradation of the hydrogels has been studied in vitro with dextranase. FITC-albumin release from the GMD/DMP hydrogels was affected by molecular weight of nextran and the presence of dextranase in the release medium.

  • PDF

Synthesis, Properties and Permeation of Solutes through Hydrogels based on Poly(ethylene glycol)-co-Poly(lactones) diacrylate Macromers and Chitosan (UV 경화형 키토산/지방족 폴리에스터 Hydrogel IPN 제조 및 약물투과)

  • Cho, S.M.;Kim, S.Y.;Lee, Y.M.;Sung, Y.K.;Cho, C.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.229-230
    • /
    • 1998
  • Triblock copolymers from poly(ethylene glycol) (PEG) and D,L-lactide or $\varepsilon$-carprolactone were synthesized to prepare semi-interpenetrating polymer network (semi-IPN) with chitosan by U.V. irradiation method. Then, solute permeation through these semi-IPNs hydrogels were investigated. The structures of semi-IPNs were confirmed by FT-IR spectroscopy and wide angle X-ray diffractometer (WAXD). Equilibrium water content (EWC) of these hydrogels was in the range of 67-75%. The crystallinity, thermal properties and mechanical properties of semi-IPNs hydrogels were studied. All the hydrogels revealed a remarkable decrease in crystallinity as compared with PEG macromer itself. The tensile strengths of semi-IPNs hydrogels in dry state were rather high, but those of hydrogels in wet state decreased drastically. The permeabilities of solutes of hydrogels followed the swelling behaviors and were regulated by solute size.

  • PDF

Preparation and Characterization of Poly(vinyl alcohol)/Poly(acrylic acid) Hydrogel by Radiation (방사선을 이용하여 제조한 poly(vinyl alcohol)/poly(acrylic acid) 하이드로젤의 제조 및 특성)

  • Park, Jong-Seok;Kim, Hyun-A;Choi, Jong-Bae;Gwon, Hui-Jeong;Lim, Youn-Mook;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.377-382
    • /
    • 2011
  • Poly(vinyl alcohol) (PVA) is an interesting material with good biocompatibility, high elasticity and hydrophilic chacrateristics. In this study, crosslinked hydrogels based on PVA, and poly(acrylic acid) (PAAc) were prepared by gamma-ray irradiation. PVA and PAAc powders were dissolved in deionized water, and then irradiated by a gamma-ray with a radiation dose of 50 kGy to make hydrogels. The hydrogels were then annealed in an oven at $120^{\circ}C$ for 10 min, 30 min and 50 min under nitrogen atmosphere. The properties of a hydrogel such as gel fraction, swelling behavior, thermogravimetric analysis (TGA) and adhesive strength as a function of PAAc content and annealing time were investigated. The gel fraction decreases with decreasing PAAc content and increasing annealing time. The thermal behaviors have shown different patterns according to the annealing time. The adhesive strength increases with increasing PAAc content.

Theoretical studies on the stabilization and diffusion behaviors of helium impurities in 6H-SiC by DFT calculations

  • Obaid Obaidullah;RuiXuan Zhao;XiangCao Li;ChuBin Wan;TingTing Sui;Xin Ju
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2879-2888
    • /
    • 2023
  • In fusion environments, large scales of helium (He) atoms are produced by a radical transformation along with structural damage in structural materials, resulting in material swelling and degradation of physical properties. To understand its irradiation effects, this paper investigates the stability, electronic structure, energetics, charge density distribution, PDOS and TDOS, and diffusion processes of He impurities in 6HSiC materials. The formation energy indicates that a stable, favorable position for interstitial He is the HR site with the lowest energy of 2.40 eV. In terms of vacancy, the He atom initially prefers to substitute at pre-existing Si vacancy than C vacancy due to lower substitution energy. The minimum energy paths (MEPs) with migration energy barriers are also calculated for He impurity by interstitial and vacancy-mediated diffusion. Based on its calculated energy barriers, the most possible diffusion path includes the exchange of interstitial and vacancy sites with effective migration energies ranging from 0.101 eV to 1.0 eV. Our calculation provides a better understanding of the stabilization and diffusion behaviors of He impurities in 6H-SiC materials.

Effects of Ultraviolet Radiation on the Skin (자외선에 의한 피부반응)

  • Youn, Jail-Il
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.3
    • /
    • pp.181-186
    • /
    • 1995
  • UV irradiation causes a variety of biologic effects on the skin. These effects can be devided to acute reactuons and chronic reacxtions by duration of UV irradiation. Acute reactions are erythema reaction, pigment reactions and changes in epidermal thickness. Among them erythema reaction is most common and conspicuous acute effects of the skin. Upon exposure to sun or artificial UV soures, a faint redness response of skin may begin. Larger exposure causes sunburn reaction which is exaggerated erythema reactionassociated with pain, swelling, vesicle and dulla. Extent and time course of erythema reaction depend upon several factors including wavelength and dose of UVR, skin conditions likeas skin type, site, color, temperature, humidity and environmental factors. Evaluation of erythema erythema induced by UV irradiation is difficult to quantify. Degree of redness of skin are usually estimated by subjective visual evaluation. The lowest exposure dose required to protuce erythema is called minimal erythema dose (mod). Repeated exposures of UVR result in photaging skin. In this condition we can see wrinkling, skin atrophy, dilated blood vessels and keratoses. In sensitive persons photocarcinogenesis is can Be developed on exposed area of skin. Recently skin canser is increasing now in our country. An effective public education and photopreventive method must be developed.

  • PDF

Synthesis of Electroactive PAAc/PVA/PEG Hydrogel Soft Actuator by Radiation Processing and Their Dynamic Characteristics (방사선을 이용한 전기 활성 PAAc/PVA/PEG 하이드로겔 소프트 액추에이터의 제조 및 구동 특성 분석)

  • Shin, Yerin;Kim, So Yeon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.698-706
    • /
    • 2019
  • Over the last few decades, there have been a lot of efforts to develop soft actuators, which can be external stimuli-responsive and applied to the human body. In order to fabricate medical soft actuators with a dynamic precision control, the 3D crosslinked poly(acrylic acid) (PAAc)/poly(vinyl alcohol) (PVA)/poly(ethylene glycol) (PEG) hydrogels were synthesized in this study by using a radiation technique without noxious chemical additives or initiators. After irradiation, all hydrogels showed high gel fraction over 75% and the ATR-FTIR spectra indicated that PAAc/PVA/PEG hydrogels were successfully synthesized. In addition, the gel fraction, equilibrium water content, and compressive strength were measured to determine the change in physical properties of PAAc/PVA/PEG hydrogels according to the irradiation dose and content ratio of constituents. As the irradiation dose and amount of poly(ethylene glycol) diacrylate (PEGDA) increased, the PAAc/PVA/PEG hydrogels showed a high crosslinking density and mechanical strength. It was also confirmed that PAAc/PVA/PEG hydrogels responded to electrical stimulation even at a low voltage of 3 V. The bending behavior of hydrogels under an electric field can be controlled by changing the crosslinking density, ionic group content, applied voltage, and ionic strength of swelling solution.

Simulation of reactivity-initiated accident transients on UO2-M5® fuel rods with ALCYONE V1.4 fuel performance code

  • Guenot-Delahaie, Isabelle;Sercombe, Jerome;Helfer, Thomas;Goldbronn, Patrick;Federici, Eric;Jolu, Thomas Le;Parrot, Aurore;Delafoy, Christine;Bernaudat, Christian
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.268-279
    • /
    • 2018
  • The ALCYONE multidimensional fuel performance code codeveloped by the CEA, EDF, and AREVA NP within the PLEIADES software environment models the behavior of fuel rods during irradiation in commercial pressurized water reactors (PWRs), power ramps in experimental reactors, or accidental conditions such as loss of coolant accidents or reactivity-initiated accidents (RIAs). As regards the latter case of transient in particular, ALCYONE is intended to predictively simulate the response of a fuel rod by taking account of mechanisms in a way that models the physics as closely as possible, encompassing all possible stages of the transient as well as various fuel/cladding material types and irradiation conditions of interest. On the way to complying with these objectives, ALCYONE development and validation shall include tests on $PWR-UO_2$ fuel rods with advanced claddings such as M5(R) under "low pressure-low temperature" or "high pressure-high temperature" water coolant conditions. This article first presents ALCYONE V1.4 RIA-related features and modeling. It especially focuses on recent developments dedicated on the one hand to nonsteady water heat and mass transport and on the other hand to the modeling of grain boundary cracking-induced fission gas release and swelling. This article then compares some simulations of RIA transients performed on $UO_2$-M5(R) fuel rods in flowing sodium or stagnant water coolant conditions to the relevant experimental results gained from tests performed in either the French CABRI or the Japanese NSRR nuclear transient reactor facilities. It shows in particular to what extent ALCYONE-starting from base irradiation conditions it itself computes-is currently able to handle both the first stage of the transient, namely the pellet-cladding mechanical interaction phase, and the second stage of the transient, should a boiling crisis occur. Areas of improvement are finally discussed with a view to simulating and analyzing further tests to be performed under prototypical PWR conditions within the CABRI International Program. M5(R) is a trademark or a registered trademark of AREVA NP in the USA or other countries.