• Title/Summary/Keyword: Irradiation swelling

Search Result 111, Processing Time 0.021 seconds

AN ELECTRON MICROSCOPIC STUDY OF THE IRRADIATION EFFECTS ON THE RAT PAROTID INTERCALATED DUCT CELLS (방사선조사가 타액선 도관세포에 미치는 영향에 관한 전자현미경적 연구)

  • Choi Won Jai;Lee Sang Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.18 no.1
    • /
    • pp.137-147
    • /
    • 1988
  • This study was designed to investigate the effects of irradiation on the salivary ductal cells, especially on the intercalated ductal cells of the rat parotid glands. For this study, 36 Sprague-Dawley strain rats were irradiated on the head and neck region with absorbed dose of 15Gy by Co-60 teletherapy unit, Picker's model 4M60. The conditions irradiated were that field size, SSD, dose rate and depth were 12×5㎝m, 50㎝, 222 Gy/min. and 1㎝. respectively. The experimental animals were sacrificed 1, 2, 3, 6, 12 hours and 1, 3, 7 days after the irradiation and the changes of the irradiated intercalated duct cells of the parotid glands were examined under the light and electron microscope. The results were as follows: 1. Under the light and electron microscope, the nucleus, mitochondria and secretory granules showed severe changes in the early stage after irradiation and the most severe cellular de- generations were observed 2 hours after irradiation, but the repair processes began from 6 hours after irradiation. 2. Under the electron microscope, loss of the nuclear membranes, derrangement of the chromosomes, swelling and destruction of the secretory granules, and widening of the intercellular spaces were observed after irradiation. 3. Under the light microscope, atrophy and irregular proliferation of the ductal cells, cuboidal metaplasia, hyperchromatism, and the construction or obstruction of the lumen were observed after irradiation.

  • PDF

Evaluation on Physical and Mechanical Properties of Wood Plastic Composites Treated under Ultraviolet Irradiation (자외선을 처리한 목재 플라스틱 복합재의 물리 및 역학적 성질 평가)

  • Lee, Jong-Shin;Kim, Soung-Joon
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.4
    • /
    • pp.428-434
    • /
    • 2015
  • In this study, we received each wood plastic composites (WPC) from three manufacturers. These WPCs were evaluated regarding their physical and mechanical properties of both before and after accelerated weathering by ultraviolet (UV) irradiation. The total time of exposure of the WPCs to UV irradiation was 1800 h. The water absorption, volumetric swelling and shrinkage of WPCs did not affected by UV irradiation. Among the mechanical properties, there was no significant differences in bending strength and screw withdrawal resistance of UV treated WPCs compared with those of reference WPCs. However, surface hardness of WPCs showed decrease under UV irradiation. Stereoscopic microscopy observation revealed deterioration of the surface layer polymer in all weathered WPCs by UV. Exposure of the WPCs to UV irradiation caused decomposition and disappearance of the polymer layer. From this result, we can estimate that damage of polymer by UV led to a decrease in the surface hardness of the WPCs. The wood flours retained original shape after accelerated weathering by UV irradiation.

Estimation of the chemical compositions and corresponding microstructures of AgInCd absorber under irradiation condition

  • Chen, Hongsheng;Long, Chongsheng;Xiao, Hongxing;Wei, Tianguo;Le, Guan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.344-351
    • /
    • 2020
  • AgInCd alloy is widely used as neutron absorber in nuclear reactors. However, the AgInCd control rods may fail during service due to the irradiation swelling. In the present study, a calculational method is proposed to calculate the composition change of the AgInCd absorber. Calculated results show that neutron fluence has significant impact on the chemical compositions. Ag and In contents gradually decrease while Cd and Sn conversely increases from the center to the rim of AgInCd absorber due to the depression of neutron flux. The composition change at the surface is higher almost two times than that at the center. Based on the calculated compositions, six simulated AgInCdSn alloys were prepared and examined. With the increase of Cd and Sn, the simulated AgInCdSn alloys transform from a single fcc phase into the mixed fcc and hcp phases, and finally into the single hcp phase. The atomic volume of the hcp phase is obviously larger than the fcc phase. The fcc-hcp transformation results in considerable volume swelling of the AgInCd absorber. Moreover, the lattice parameters of the fcc and hcp phases gradually increase with Cd and Sn contents, which also can induce small volume swelling.

Radiation damage analysis in SiC microstructure by transmission electron microscopy

  • Idris, Mohd Idzat;Yoshida, Katsumi;Yano, Toyohiko
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.991-996
    • /
    • 2022
  • Microstructures of monolithic high purity SiC and SiC with sintering additives after neutron irradiation to a fluence of 2.0-2.5 × 1024 n/m2 (E > 0.1 MeV) at 333-363 K and after post-irradiation annealing up to 1673 K were observed using a transmission electron microscopy. Results showed that no black spot defects or dislocation loops in SiC grains were found after the neutron irradiation for all of the specimens owing to the moderate fluence at low irradiation temperature. Thus, it is confirmed that these specimens were swelled mostly by the formation of point defects. Black spots and small dislocation loops were discovered only after the annealing process in PureBeta-SiC and CVD-SiC, where the swelling almost diminished. Anomalous-shaped YAG grains were found in SiC ceramics containing sintering additives. These grains contained dense black spots defects and might lose crystallinity after the neutron irradiation, while these defects may annihilate by recrystallization during annealing up to 1673 K. Amorphous grain boundary phase was also presented in this ceramic, and a large part of it was crystallized through post-irradiation annealing and could affect their recovery behavior.

A CLASSIFICATION OF UNIQUELY DIFFERENT TYPES OF NUCLEAR FISSION GAS BEHAVIOR

  • HOFMAN GERARD L.;KIM YEON SOO
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.299-308
    • /
    • 2005
  • The behavior of fission gas in all major types of nuclear fuel has been reviewed with an emphasis on more recently discovered aspects. It is proposed that the behavior of fission gas can be classified in a number of characteristic types that occur at a high or low operating temperature, and/or at high or low fissile burnup. The crystal structure and microstructure of the various fuels are the determinant factors in the proposed classification scheme. Three types of behavior, characterized by anisotropic $\alpha$-U, high temperature metallic $\gamma$-U, and cubic ceramics, are well-known and have been extensively studied in the literature. Less widely known are two equally typical low temperature kinds: one associated with fission induced grain refinement and the other with fission induced amorphization. Grain refinement is seen in crystalline fuel irradiated to high burnup at low temperatures, whereas breakaway swelling is observed in amorphous fuel containing sufficient excess free-volume. Amorphous fuel, however, shows stable swelling if insufficient excess free-volume is available during irradiation.

Preparation and Characterization of PVAL/PVP/Hexylene Glycol/Chitosan Hydrogels by $\gamma$-Ray ($\gamma$-선을 이용한 PVAL/PVP/헥실렌 글리콜/키토산 수화젤의 제조 및 특성)

  • 최은경;김형일;노영창
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.349-357
    • /
    • 2003
  • Hydrogels for wound dressing from a mixture of poly(vinyl alcohol) (PVAL), poly(N-vinyl pyrrolidone) (PVP), hexylene glycol (HG) and chitosan were made. The hydrogels were obtained by physical crosslinking of freezing and thawing, chemical crosslinking of irradiation, and irradiation after freezing and thawing of mixture solutions. The solid concentration of PVAL/PVP/HG/chitosan was 15 wt%. The concentration of chitosan was 0.3 wt%, and the ratio of PVAL/PVP was 6:4. The concentration of HG was in the range of 1∼5 wt%. The number of repeated freezing and thawing was in the range of 1∼3 times, and gamma irradiation doses were 25, 35 and 50 kGy. The physical properties such as gelation, water absorption and gel strength of hydrogels were examined. Gel content and gel strength decreased as HG concentration increased, whereas degree of swelling increased. Gel content and gel strength increased as irradiation dose and the number of freezing and thawing increased, whereas degree of swelling decreased. The hydrogels were evaluated for the healing effect for animals and for the antibacterial effect.

Functionalization of polyethylene by graft copolymerization for separation processes

  • Kaur, Inderjeet;Gupta, Nitika;Kumari, Vandna
    • Advances in materials Research
    • /
    • v.2 no.1
    • /
    • pp.15-36
    • /
    • 2013
  • Incorporation of polar functional moieties into polyethylene (PE) film has been achieved by graft copolymerization of polar monomers such as methacrylic acid (MAAc) and acrylamide (AAm) on to PE film, preirradiated with ${\gamma}$-rays from $^{60}Co$ source, using benzoyl peroxide (BPO) as initiator in aqueous medium. Percentage of grafting of MAAc and AAm was determined as a function of irradiation dose, monomer and initiator concentration, temperature, reaction time and amount of water. Maximum percentage of grafting of MAAc (1453%) and AAm (21.28%) was obtained at [MAAc] = $235.3{\times}10^{-2}$ mol/L, [AAm] = $23.4{\times}10^{-2}$ mol/L, [BPO] = $5.5{\times}10^{-2}$ mol/L and $16.5{\times}10^{-2}$ mol/L at $80^{\circ}C$, $90^{\circ}C$ in 180 min and 90 min respectively. The grafted PE films were characterized by FTIR, Thermogravimetric analysis (TGA) Scanning Electron Micrography (SEM) and X-ray diffraction methods. Some selective properties of grafted films such as swelling behavior, ion and metal uptake have been carried out. The biodegradation studies of the grafted PE films have also been investigated. The grafted films developed superior swelling behavior with maximum swelling (480%) in water as compared to pristine PE (13.55%), better thermal stability and ion and metal uptake studies showed promising results that can be effectively used for desalination of brackish water and separation of metals from the industrial effluents.

Drug Release from the Enzyme-Degradable and pH-Sensitive Hydrogel Composed of Glycidyl Methacrylate Dextran and Poly{acrylic acid)

  • Kim In-Sook;Oh In-Joon
    • Archives of Pharmacal Research
    • /
    • v.28 no.8
    • /
    • pp.983-987
    • /
    • 2005
  • Hydrogels composed of glycidyl methacrylate dextran (GMD) and poly(acrylic acid, PM) were prepared by UV irradiation method for colon-specific drug delivery. GMD was synthesized by coupling of glycidyl methacrylate to dextran in the presence of 4-(N,N-dimethylamino)pyridine. GMD was photo-polymerized by ammonium peroxydisulfate as initiating system in phosphate­buffered solution (0.1 M, pH 7.4). And then, acrylic acid monomer was added and subsequently heat-polymerized by 2,2'-azobisisobutyronitrile as an initiator. The hydrogels exhibited high swelling ratio (about 20) at $37^{\circ}C$, and showed a pH-dependent swelling behavior. In addition, the swelling ratio of the hydrogel was remarkably enhanced to about 45 times in the presence of dextranase at pH 7.4. The swelling-deswelling behavior proceeded reversibly for the GMD/PM hydrogels between pH 2 and pH 7.4. Release of 5-aminosalicylic acid from the GMD/PAA hydrogels was evaluated in simulated gastrointestinal pH fluids in the absence or presence of dextranase. We concluded that the hydrogels prepared could be used as a dual-sensitive drug carrier for sequential release in gastrointestinal tract.

Facile preparation of self-assembled wool-based graphene hydrogels by electron beam irradiation

  • Park, Mira;Pant, Bishweshwar;Choi, Jawun;Park, Yong Wan;Lee, Chohye;Shin, Hye Kyoung;Park, Soo-Jin;Kim, Hak-Yong
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.136-141
    • /
    • 2014
  • Three dimensional self-assembled graphene hydrogels were easily fabricated by electron beam irradiation (EBI) using an aqueous solution of wool/poly(vinyl alcohol) and graphene oxide (GO). After exposure to various levels of EBI radiation, the highly porous, self-assembled, wool-based graphene hydrogels were characterized using scanning electron microscopy and Fourier-transform infrared spectroscopy; to determine the gel fraction, degree of swelling, gel strength, kinetics-of-swelling analyses and removal of hexavalent chromium (Cr(VI)) from the aqueous solution. X-ray diffraction results confirmed that EBI played a significantly important role in reducing GO to graphene. The adsorption equilibrium of Cr(VI) was reached within 80 min and the adsorption capacity was dramatically increased as the acidity of the initial solution was decreased from pH 5 to 2. Changes in ionic strength did not exert much effect on the adsorption behavior.