• Title/Summary/Keyword: Irradiation Temperature

Search Result 1,196, Processing Time 0.032 seconds

Fabrication and Characterization of Composite LSCF-Ag Cathode for Solid Oxide Fuel Cells using Electron Beam Irradiation Process

  • Kang, Hyun Suk;Jung, Yung-Min;Song, Rak-Hyun;Peck, Dong-Hyun;Park, ChangMoon;Lee, Byung Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2969-2973
    • /
    • 2014
  • A new process to fabricate a composite LSCF-Ag cathode material for SOFCs by electron beam (e-beam) irradiation process has been suggested for operation under intermediate temperature range of $600-700^{\circ}C$. A composite LSCF-Ag cathode with uniformly coated Ag nanoparticles on the surface of the LSCF material was prepared by a facile e-beam irradiation method at room temperature. The morphology of the composite LSCF-Ag material was analyzed using a TEM, FE-SEM, and EDS. The prepared composite LSCF-Ag material can play a significant role in increasing the electro-catalytic activities and reducing the operating temperature of SOFCs. The performance of a tubular single cell prepared using the composite LSCF-Ag cathode, YSZ electrolyte and a Ni/YSZ anode was evaluated at reduced operating temperature of $600-700^{\circ}C$. The micro-structure and chemical composition of the single cell were investigated using a FE-SEM and EDS.

RELATIONSHIP BETWEEN RADIATION INDUCTED YIELD STRENGTH INCREMENT AND CHARPY TRANSITION TEMPERATURE SHIFT IN REACTOR PRESSURE VESSEL STEELS OF KOREAN NUCLEAR POWER PLANTS

  • Lee, Gyeong-Geun;Lee, Yong-Bok;Kwon, Jun-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.543-550
    • /
    • 2012
  • The decrease in the fracture toughness of ferritic steels in a reactor pressure vessel is an important factor in determining the lifetime of a nuclear power plant. A surveillance program has been in place in Korea since 1979 to assess the structural integrity of RPV steels. In this work, the surveillance data were collected and analyzed statistically in order to derive the empirical relationship between the embrittlement and strengthening of irradiated reactor pressure vessel steels. There was a linear relationship between the yield strength change and the transition temperature shift change at 41 J due to irradiation. The proportional coefficient was about $0.5^{\circ}C$/MPa in the base metals (plate/forgings). The upper shelf energy decrease ratio was non-linearly proportional to the yield strength change, and most of the data lay along the trend curve of the US results. The transition regime temperature interval, ${\Delta}T_T$, was less than the US data. The overall change from irradiation was very similar to the US results. It is expected that the results of this study will be applied to basic research on the multiscale modeling of the irradiation embrittlement of RPV materials in Korea.

The Effect of Electron Beam Irradiation on Discoloration and Thermal Property of HDPE Filled with Antioxidants and UV Stabilizers (전자선 조사에 따른 산화방지제 및 자외선안정제 첨가 HDPE의 변색 영향과 열적 특성 분석)

  • Jeun, Joon Pyo;Jung, Seung Tae;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.7 no.1
    • /
    • pp.23-28
    • /
    • 2013
  • In this study, we fabricated high density polyethylene (HDPE) composites filled with antioxidants and UV stabilizers. The electron beam irradiation on the fabricated composites was carried out over a range of absorbed doses from 50 to 200 kGy to confirm the changes of discoloration. The changes of discoloration were characterized using a color difference meter and FT-IR for confirming the changes of the color difference and structural change. It was observed that the color difference of IRGANOX 1010-, IRGAFOS 168-, and TINUVIN 328- added HDPE was higher than that of the control HDPE by electron beam irradiation. The melting temperature of UV stabilizer-added HDPE was not significantly changed by electron beam irradiation. However, the melting temperature of phenol-containing antioxidant-added HDPE was increased with increasing the absorbed dose. And the melting temperature of phosphorus-containing antioxidant-added composite was decreased with increasing the absorbed dose.

Combined Effect of Irradiation and Ageing Condition on Physicochemical and Microbial Quality of Hanwoo Eye of Round

  • Yim, Dong-Gyun;Jo, Cheorun;Kim, Hyun-Joo;Cha, Ju-Su;Kim, Hyun Cheol;Nam, Ki-Chang
    • Food Science of Animal Resources
    • /
    • v.35 no.3
    • /
    • pp.406-412
    • /
    • 2015
  • The combined effects of electron-beam irradiation and ageing of beef were examined. The irradiated samples at dose of 0 or 2 kGy were kept and analyzed for the microbial growth, shear values, meat color, and nucleotide-related flavor compounds at different ageing temperatures (2, 10, or 25℃) for 8 d. The irradiation effect on inactivation of foodborne pathogens was also investigated. The population of Listeria monocytogenes and E. coli O157:H7 inoculated in beef samples decreased in proportion to the irradiation dose, showing D10 values of 0.66 and 0.65 kGy respectively. The irradiated beef eye of round had lower number of total aerobic bacteria (TAB) than nonirradiated one during the storage, but the TAB increased with higher ageing temperature (p<0.05). Especially, TAB increased sharply in non-irradiated samples aged at 25℃ after 4 d (p<0.05). With increasing ageing temperature and ageing time, shear force values decreased (p<0.05). The color a* values of the irradiated beef were lower than those of the non-irradiated throughout the ageing period (p<0.05). As ageing time and temperature increased, the amounts of inosine monophosphate decreased and the hypoxanthine increased (p<0.05). Relatively high ageing temperature could be used at irradiated beef eye of round to shorten the ageing time.

Blood Flow and Skin Temperature Increases by Monochromatic Infrared Energy Irradiation

  • Lee, Jae-Hyoung;Kim, Gi Won
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.3
    • /
    • pp.202-207
    • /
    • 2012
  • Purpose: The purpose of this study was to determine the effect of monochromatic infrared energy (MIRE) on the blood flow of the superficial radial artery and local skin temperature in healthy subjects. Methods: Forty healthy volunteers were recruited and randomly assigned to MIRE group (n=20) and placebo group (n=20). The MIRE group received a 890 nm MIRE irradiation on the forearm using two therapy pads for 30 minutes. The therapy pad was composed of an array of 60 diodes. MIRE unit was set at bar 8, that corresponds to a diode power of 10 mW and a power density of $63mW/cm^2$. The placebo group received sham MIRE. Peak blood flow velocity (PBFV), mean blood flow velocity (MBFV), and skin temperature (ST) were measured pre- and post-MIRE irradiation. Results: There was a significant difference in PBFV (p<0.001), MBFV (p<0.001), and ST (p<0.001) between the pre- and post-treated values in the MIRE group. In contrast, no significant difference was found between the pre- and post-treated values in the placebo group. There was significant difference in mean change values from baseline of PBFV (p<0.001), MBFV (p<0.001), and ST (p<0.001) between the MIRE group and the placebo group. There was a significant increase in PBFV (p<0.001), MBFV (p<0.001), and ST (p<0.001) following MIRE irradiation. Conclusion: The arterial blood flow and local skin temperature of the forearm in the healthy subjects were significantly increased following MIRE irradiation.

Optimum Processing Conditions for Pesticides Removal in Mandarine Orange Peel by Ultraviolet Rays and Photocatalytic Materials (자외선과 광 촉매제를 이용한 감귤껍질 농약제거공정의 최적화)

  • Kim, Hee-Sun;Han, Myung-Ryun;Kim, Ae-Jung;Kim, Myung-Hwan
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.28-33
    • /
    • 2011
  • UV-C and -B types of lamps, and $H_2O_2$ as a photocatalytic material were applied to optimize processing conditions for pesticides removal in Mandarine orange peel. Factors to affect the removal of pestrcides were arranged as a function of irradiation temperature, irradiation time, and $H_2O_2$ spray concentration. The optimum processing conditions for the chloropyrifos and the EPN removals in Mandarine orange peel were irradiation time of 60 min, irradiation temperature of $45^{\circ}C$ and $H_2O_2$ spray concentration of 1000 ppm. However, the optimum processing conditions for methidathion removal were 60 min of irradiation time, $40^{\circ}C$ of irradiation temperature and 1000 ppm of $H_2O_2$ spray concentration. The residual percentages of chloropyrifos, EPN and methidathion were 46, 49 and 28% after above irradiation processing, respectively.

Effects of Annealing and Neutron Irradiation on Micostructural and Mechanical Properties of High Burn-up Zr Claddings (고연소도 신형 Zr피복관의 미세조직과 기계적 특성에 미치는 열처리 및 중성자 조사의 영향)

  • Baek, Jong Hyuk;Kim, Hyun Gil;Jeong, Yong Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.3
    • /
    • pp.151-164
    • /
    • 2004
  • The changes of microstructural and mechanical properties were evaluated for the high burn-up fuel claddings after the neutron irradiation of $1.8{\sim}3.1{\times}10^{20}n/cm^2$ (E>1.0 MEV) in HANARO research reactor. After the irradiation, the spot-type dislocations (a-type dislocations) were easily observed in most claddings, and the density of the dislocations was different depending on the grains and was higher at grain boundaries than within grains. As the final annealing temperature increased, the density of spot-type dislocations increased and the line-type dislocations (c-type dislocations) which was perpendicular to the <0002> direction, appeared sporadically in some claddings. However, the types of precipitates in the fuel claddings after the irradiation were not changed from that in unirradiated claddings. The mechanical properties including the hardness, strength and elongation after the irradiation were changed due to the formation of spot-type dislocations. That is, the increase in hardness and strength as well as the decrease in elongation after the irradiation was occurred simultaneously with increasing the final annealing temperature. Owing to the Nb contribution to the formation of spot-type dislocation during the irradiation, the increase in hardness and strength in higher Nb-contained Zr alloys after the irradiation was higher than that in lower Nb-contained Zr alloys.

Effect of Storage Temperature and Antioxidant Additives on the Color and Physiological Activity of Gamma Irradiated Green Tea Leaf Extract

  • Jo, Cheo-Run ;Byun, Myung-Woo
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.2
    • /
    • pp.185-190
    • /
    • 2003
  • Gamma irradiation was used as part of a new processing method to produce a brighter-colored and mild-flavored green tea leaf extract that retained all of its physiological activities. Dried green tea leaf was extracted with 70% ethanol and gamma irradiated at 0,5, 10, 20 kGy. Hunter color $L^{*}$- and $a^{*}$-values were increased with irradiation in a dose-dependent manner, which was a color range from dark brown to bright yellow. However, the irradiation effect gradually disappeared during 3 weeks of storage, with color reverting to that of untreated samples. There was no difference in the radical scavenging and tyrosinase inhibition effect by irradiation. Among antioxidants used, ascorbic acid was the most effective against color reversion. In contrast, cysteine was shown to protect the effect of color change with irradiation. Results indicated that enhanced color of irradiated green tea leaf extract can be effectively controlled by additives such as ascorbic acid and a low storage temperature.e.e.

A Study on the Electrical Properties of Ethylene Propylene Rubber by Thermal Treatment and Irradiation (방사선 및 열처리에 의한 에틸렌프로필렌 고무의 전기적 특성에 관한 연구)

  • 이성일
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.4
    • /
    • pp.137-146
    • /
    • 2002
  • In order to investigate the effect of irradiation by $^{60}Co-\gamma$rays as well as the e thermal treatment on the dielectric deterioration in ethylene propylene rubber, insulating material for electric cables used in atomic power plants, charging discharging current, residual built- up voltage and dielectric properties are measu discussed in this study. Variance in the characteristic of relative dielectric constant as a function of tem was observed in relatively high dose of irradiation. Since glass transition tem appeared at tens of degree Celsius below zero, the characteristic is attributed orientation polarization. Dielectric loss is generally increased, with increasing d irradiation in the characteristic of dielectric loss as a function of temperature, No d loss by thermal treatment was observed. Dielectric resistance decreases with increa of irradiation in the characteristic of charging current as a function of temperature be considered that dielectric resistance seems to be recovered by thermal treatm characteristic of discharging current as a function of time in the specimen less ir become similar to that of the unirradiated, when thermal treated. A peak is shown residual built- up voltage as a function of time, and the corresponding time of the shorten as increasing dose of irradiation. It is also observed that the corresponding the peak is lengthened by thermal treatment.

Evaluation of climate change on the rice productivity in South Korea using crop growth simulation model

  • Lee, Chung-Kuen;Kim, JunHwan;Shon, Jiyoung;Yang, Won-Ha
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2011.11a
    • /
    • pp.16-18
    • /
    • 2011
  • Evaluation of climate change on the rice productivity was conducted using crop growth simulation model, where Odae, Hwaseong, Ilpum were used as a representative cultivar of early, medium, and medium-late rice maturity type, respectively, and climate change scenario 'A1B' was applied to weather data for future climate change at 57sites. When cropping season was fixed, rice yield decreased by 4~35% as climate change which was caused by poor filled grain ratio with high temperature and low irradiation during grain-filling. When cropping season was changed, rice yield decreased by only 0~5% as climate change which was caused poor filled grain ratio with low irradiation during grain-filling period. However, this irradiation decline was less than when cropping season was fixed. Therefore, we need to develop rice cultivars resistant to low irradiation which can maintain high filled grain ratio under poor irradiation condition, and late maturity rice cultivars whose growing period is longer than the present medium-late maturity type.

  • PDF