• Title/Summary/Keyword: Iron-based catalysts

Search Result 25, Processing Time 0.024 seconds

Effects of $SiO_2$ on Catalytic Properties of Iron-Based Catalysts for Fischer-Tropsch Synthesis (FT 합성반응용 철촉매에 미치는 촉매특성에 미치는 $SiO_2$ 첨가효과)

  • Chun, Dong-Hyun;Kim, Hak-Joo;Hyun, Sun-Taek;Yang, Jung-Hoon;Lee, Ho-Tae;Yang, Jung-Il;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.861-862
    • /
    • 2009
  • Precipitated iron-based catalysts are highly promising for the Fischer-Tropsch synthesis (FTS), in particular for the low temperature FTS below $280^{\circ}C$, because of their high activity and low cost. $SiO_2$ is an essential promoter for the precipitated iron-based catalysts to improve the attrition strength and physical stability. In this study, we carried out FTS over precipitated iron-based catalysts with and without $SiO_2$ in a fixed-bed reactor. The catalysts were prepared by a conventional co-precipitation method. In case of the catalysts with $SiO_2$, we used two comparative preparation methods, i.e., incorporation of $SiO_2$ before precipitation (denoted as precipitated $SiO_2$) and after precipitation (denoted as binder $SiO_2$), respectively. The addition of $SiO_2$ crucially affects both physico-chemical properties and catalytic peformance of precipitated iron-based catalysts.

  • PDF

Study on the Effect of Iron-based Metal Catalysts on the Thermal Decomposition Behavior of ABS (Iron계 금속 촉매가 ABS의 열분해 거동에 미치는 영향에 관한 연구)

  • Jang, Junwon;Kim, Jin-Hwan;Bae, Jin-Young
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.496-501
    • /
    • 2005
  • The thermal degradation of ABS in the presence of iron-based metal catalysts has been studied by thermogravimetric analysis (TGA). The reaction of iron-based metal catalysts (ferric nitrate nonahydrate, ammonium ferric sulfate dodecahydrate, iron sulfate hydrate, ammonium ferric oxalate, iron(II) acetate, iron(II) acetylacetonate and ferric chloride) with ABS has been found to occur during the thermal degradation of ABS. In a nitrogen atmosphere, char formation was observed, and at $600^{\circ}C$ approximately 3~23 wt% of the reaction product was non-volatile char. The resulting enhancement of char formation in a nitrogen atmosphere has been primarily due to the catalytic crosslinking effect of iron-based metal catalysts. On the other hand, char formation of ABS in air at high temperature by iron-based metal catalyst was unsuccessful due to the oxidative degradation of the char.

Effect of Iron Species in Mesoporous Fe-N/C Catalysts with Different Shapes on Activity Towards Oxygen Reduction Reaction

  • Kang, Taehong;Lee, Jiyeon;Kim, Jong Gyeong;Pak, Chanho
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.137-145
    • /
    • 2021
  • Among the non-precious metal catalysts, iron-nitrogen doped carbon (Fe-N/C) catalysts have been recognized as the most promising candidates for an alternative to Pt-based catalysts for the oxygen reduction reaction (ORR) under alkaline and acidic conditions. In this study, the nano replication method using mesoporous silica, which features tunable primary particle sizes and shape, is employed to prepare the mesoporous Fe-N/C catalysts with different shapes. Platelet SBA-15, irregular KIT-6, and spherical silica particle (SSP) were selected as a template to generate three different kinds of shapes of the mesoporous Fe-N/C catalyst. Physicochemical properties of mesoporous Fe-N/C catalysts are characterized by using small-angle X-ray diffraction, nitrogen adsorption-desorption isotherms, and scanning electron microscopy images. According to the electrochemical evaluation, there is no morphological preference of mesoporous Fe-N/C catalysts toward the ORR activity with half-cell configuration under alkaline electrolyte. By implementing X-ray photoelectron spectroscopy analysis of Fe and N atoms in the mesoporous Fe-N/C catalysts, it is possible to verify that the activity towards ORR highly depends on the portions of "Fe-N" species in the catalysts regardless of the shape of catalysts. It was suggested that active site distribution in the Fe-N/C is one important factor towards ORR activity.

Recent Progress in the Identification of Active Sites in Pyrolyzed Fe-N/C Catalysts and Insights into Their Role in Oxygen Reduction Reaction

  • Sa, Young Jin;Kim, Jae Hyung;Joo, Sang Hoon
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.169-182
    • /
    • 2017
  • Iron and nitrogen codoped carbon (Fe-N/C) catalysts have emerged as one of the most promising replacements for state-of-the-art platinum-based electrocatalysts for oxygen reduction reaction (ORR) in polymer electrolyte fuel cells. During the last decade, significant progress has been achieved in Fe-N/C catalysts in terms of ORR activity improvement and active site identification. In this review, we focus on recent efforts towards advancing our understanding of the structure of active sites in Fe-N/C catalysts. We summarize the spectroscopic and electrochemical methods that are used to analyze active site structure in Fe-N/C catalysts, and the relationship between active site structure and ORR activity in these catalysts. We provide an overview of recently reported synthetic strategies that can generate active sites in Fe-N/C catalysts preferentially. We then discuss newly suggested active sites in Fe-N/C catalysts. Finally, we conclude this review with a brief future outlook.

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction III. Modification of $Mo/γ-Al_2O_3$ Catalyst with Iron Group Metals

  • Park, Jin Nam;Kim, Jae Hyeon;Lee, Ho In
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1233-1238
    • /
    • 2000
  • $Mo/{\gamma}-Al_2O_3catalysts$ modified with Fe, Co, and Ni were prepared by impregnation method and catalytic activity for water gas shift reaction was examined. The optimum amount of Mo loaded for the reaction was 10 wt% $MoO_3$ to ${\gamma}-Al_2O_3.$ The catalytic activity of $MoO_3/{\gamma}-Al_2O_3was$ increased by modifying with Fe, Co, and Ni in the order of Co${\thickapprox}$ Ni > Fe. The optimum amounts of Co and Ni added were 3 wt% based on CoO and NiO to 10 wt% $MoO_3/{\gamma}-Al_2O_3$, restectively. The TPR (temperature-programmed reduction) analysis revealed that the addition of Co and Ni enganced the reducibility of the catalysts. The results of both catalytic activity and TPR experiments strongly suggest that the redox property of the catalyst is an important factor in water gas shift reaction on the sulfided Mo catalysts, which could be an evidence of oxy-sulfide redox mechanism.

Catalytic Performance of Iron-Based Fischer-Tropsch Catalysts Promoted by $SiO_2$ Using Different Sources ($SiO_2$ 원료물질에 따른 Fischer-Tropsch 합성반응용 Fe계 촉매의 성능변화)

  • Chun, Dong Hyun;Kim, Hak-Joo;Hyun, Sun-Taek;Lee, Ho-Tae;Yang, Jung-Il;Yang, Jung Hoon;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.114.1-114.1
    • /
    • 2010
  • Fe계 촉매는 FT(Fischer-Tropsch) 합성반응에 매우 유망한 촉매로 주목받고 있으며, $280^{\circ}C$ 미만의 저온 FT 합성반응의 경우, 침전법이 Fe계 촉매의 가장 전형적인 제조방법으로 알려져 있다. Fe계 촉매에 첨가되는 조촉매로는 Cu, K, $SiO_2$ 등이 가장 대표적이며, 이 중에서 특히 구조 조촉매로 첨가되는 $SiO_2$는 Fe계 촉매의 기계적 강도를 향상시킬 뿐만 아니라, 촉매의 성능에도 크게 영향을 미치는 것으로 보고되고 있다. 본 연구에서는 침전법을 이용하여 저온 FT 합성반응용 Fe계 촉매를 제조하였고, 구조 조촉매로 첨가한 $SiO_2$의 원료물질에 따른 Fe계 촉매의 성능변화를 조사하였다. $SiO_2$의 원료물질로는 콜로이드 $SiO_2$와 분말 $SiO_2$를 이용하였으며, 분말 $SiO_2$를 이용한 촉매가 콜로이드 $SiO_2$를 이용한 촉매보다 다소 높은 CO 전환율 및 중질탄화수소 선택도를 나타내는 것을 확인하였다.

  • PDF

Effects of Cu and K Addition on Catalytic Activity for Fe-based Fischer-Tropsch Reaction (Fe계 Fischer-Tropsch 반응에서 촉매활성에 대한 Cu와 K의 첨가 효과)

  • Lee, Chan Yong;Kim, Eui Yong
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Effects of the Cu and K addition and the reduction condition of Fe-based catalysts for Fischer-Tropsch reaction are studied in a continuous flow reactor in this research. The catalysts for the reaction were prepared by homogeneous precipitation followed by incipient wetness impregnation. Physicochemical properties of the $Al_2O_3$ supported Fe-based catalysts are characterized by various methods including X-ray diffraction (XRD), temperature programmed reduction (TPR), and scanning electron microscopy (SEM). Catalytic activities and stabilities of the Fe/Cu/K catalyst are investigated in time-on-stream for an extended reaction time over 216 h. It is found that a reduction of the catalysts using a mixture of CO and $H_2$ can promote their catalytic activities, attributed to the iron carbides formed on the catalysts surface by X-ray diffraction analysis. The addition of Cu induces a fast stabilization of the reaction reducing the time to reach at the steady state by enhancement of catalytic reduction. The addition of K to the catalysts increases the CO conversion, while the physical stability of catalyst decreases with potassium loading up to 5%. The Fe/Cu (5%)/K (1%) catalyst shows an enhanced long term stability for the Fischer-Tropsch reaction under the practical reaction condition, displaying about 15% decrease in the CO conversion after 120 h of the operation.

Preparation of Water-based Magnetic Fluids with Spent Iron Oxide Catalyst (산화철 폐촉매로부터 수상 자성유체 제조방법)

  • Lee, Hyo-Sook;Shao, Hui-Ping;Kim, Chong-Oh
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.37-41
    • /
    • 2005
  • We prepared water-based magnetic fluids with the spent iron oxide catalysts which were used in the styrene monomer production process. The catalyst was composed with 70% magnetite and alkali metals. The water-based magnetic fluids were prepared by mechanical grinding with olecic acid as a surfactant and water in an attritor. The magnetization of the water-based magnetic fluids was 22 emu/g in the 10 kOe.

Synfuel Production Technology : Catalyst for Fischer-Tropsch Synthesis (합성액화연료 생산 기술: Fischer-Tropsch 합성용 촉매)

  • Park, Jo-Yong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.726-739
    • /
    • 2013
  • Fischer-Tropsch synthesis (FTS) converts synthesis gas (CO and $H_2$) into longer chain hydrocarbons by a surface polymerization reaction. Cobalt- or iron-based catalysts normally show excellent activity for syngas conversion to petroleum products leading to super clean diesel fuels. The catalytic activities of the catalysts in FTS depend on the number of active sites on the surface. The number of active site was determined by the active metal particle size, loading amount, reduction degree and support-active metal interaction. The investigation adopts new methodology in preparing FT catalyst, which contains the controlled synthesis of active metal. The main focus of this paper is to give an overview of the types of catalysts, also including their preparation and reduction; the types of FT reactors; and also including the reaction conditions.

Effects of SiO2 Incorporation on Catalytic Performance and Physico-Chemical Properties of Iron-Based Catalysts for the Fischer-Tropsch Synthesis (Fischer-Tropsch 합성반응용 Fe계 촉매의 성능 및 물리화학적 특성에 미치는 SiO2 첨가효과)

  • Hyun, Sun-Taek;Chun, Dong Hyun;Kim, Hak-Joo;Yang, Jung Hoon;Yang, Jung-Il;Lee, Ho-Tae;Lee, Kwan-Young;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.304-310
    • /
    • 2010
  • The FTS(Fischer-Tropsch synthesis) was carried out over precipitated iron-based catalysts with or without $SiO_2$ in a fixed-bed reactor at $250^{\circ}C$ and 1.5 MPa. The catalysts with $SiO_2$ showed much higher catalytic activity for the FTS than those without $SiO_2$, displaying excellent stability during 144 h of reaction. The X-ray diffraction and $N_2$ physisorption revealed that the catalysts with $SiO_2$ showed enhanced dispersion of $Fe_2O_3$ compared with those without $SiO_2$. Also, the results of temperature-programmed reduction by $H_2$ showed that the addition of $SiO_2$ markedly promoted the reduction of $Fe_2O_3$ into $Fe_3O_4$ and FeO at low temperatures below $260^{\circ}C$. In contrast, surface basicity of the catalysts, which was analyzed by temperature-programmed desorption of $CO_2$, decreased as a result of $SiO_2$ addition. We attribute the high and stable performance of the catalysts with $SiO_2$ to the improved dispersion and reducibility by the $SiO_2$ addition.