• Title/Summary/Keyword: Iron surface

Search Result 1,094, Processing Time 0.029 seconds

A Comparative Study on the Metallurgical Characteristics of the Iron Knife Using Traditional Iron-Making Method (전통 제철법을 적용하여 제작한 철제 칼의 금속학적 특성에 관한 비교 연구)

  • Cho, Sung Mo;Cho, Nam Chul;Han, Jung Uk
    • Journal of Conservation Science
    • /
    • v.34 no.5
    • /
    • pp.433-442
    • /
    • 2018
  • In this study, metal properties were compared by preparingthree iron knives from steel ingots produced via traditional iron-making, and ingot which jointed the steel of modern times. Metal microscope and SEM-EDS analysis revealed fine ferrite and pearlite structures of the hypo-eutectoid steel of Fe-C alloys. All samples also exhibited martensite on the blade of the knife. By Vicker's hardness analysis, the hardness of the sand iron knife (K1) was 533.38 HV, sand iron-nickel steel knife (K3) was 514.8 HV, and sand iron-carbon steel knife (K2) was 477.02 HV. The mass reduction due to wear was 0.058% for K1, 0.059% for K3, and 0.144% for K2. EPMA(Electron probe micro-analyzer) analysis of the surface pattern of the specimens confirmed that the patterns were exposed due to differences in the content of C or the chemical composition. Additional research on heat treatment processes is needed to increase the abrasion resistance of blades. Traditional steel ingots could produce high-quality steel if combined with nickel steel.

Microbial Reduction of Iron Oxides and Removal of TCE using the Iron Reduced by Iron Reducing Bacteria (철 환원 박테리아에 의한 산화철의 환원과 환원된 철을 이용한 TCE 제거에 관한 연구)

  • Shin, Hwa-Young;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.123-129
    • /
    • 2005
  • In situ permeable reactive barrier (PRB) technologies have been proposed to reductively remove organic contaminants from the subsurface environment. The major reactive material, zero valent iron ($Fe^0$), is oxidized to ferrous iron or ferric iron in the barriers, resulting in the decreased reactivity. Iron-reducing bacteria can reduce ferric iron to ferrous iron and iron reduced by these bacteria can be applied to dechlorinate chlorinated organic contaminants. Iron reduction by iron reducing bacteria, Shewanella algae BrY, was observed both in aqueous and solid phase and the enhancement of TCE removal by reduced iron was examined in this study. S. algae BrY preferentially reduced Fe(III) in ferric citrate medium and secondly used Fe(III) on the surface of iron oxides as an electron acceptor. Reduced iron formed reactive materials such as green rust ferrihydrite, and biochemical precipitation. These reactive materials formed by the bacteria can enhance TCE removal rate and removal capacity of the reactive barrier in the field.

Effect of Minerals surface characteristics On Reduction Dehalogenation of chlorination solvents in water-FeS/FeS$_2$ system

  • 김성국;허재은;박세환;장현숙;박상원;홍대일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.108-111
    • /
    • 2000
  • FeS/FeS$_2$ minerals have been known to be potentially useful reductant to the removal of common organic contaminants in groundwater and soil. This research is aimed at improving our understanding of factors affecting the pathways and rates of reductive transformation of Hexachloroethane by catalytical iron minerals in natural system. Hexachloroethane is reduced by FeS/FeS$_2$ minerals under anaerobic condition to tetrachloroethylene and trichloroethylene with pentachloroethyl radical as the intermediate products. The kinetics of reductive transformations of the Hexachloroethane have been investigated in aqueous solution containing FeS, FeS$_2$. The proposed reduction mechanism for the adsorbed nitrobenzene involves the electron donor-acceptor complex as a precursor to electron transfer. The adsorbed Hexachloroethane undergo a series of electron transfer, proton transfer and dehydration to achieve complete reduction. It can be concluded that the reductive transformation reaction takes place at surface of iron-bearing minerals and is dependent on surface area and pH. Nitrobenzene reduction kinetics is affected by reductant type, surface area, pH, the surface site density, and the surface charge. FeS/FeS$_2$-mediated reductive dechlorination may be an important transformation pathway in natural systems.

  • PDF

Effects of Risering Design and Chemical Composition on Formation of Shrinkage Cavity in Gray Cast Iron (회주철의 수축결함생성에 미치는 주조방안 및 화학조성의 영향)

  • Yu, Sung-Kon
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.297-302
    • /
    • 2003
  • The effects of risering design and alloying element on the formation of defects such as external depression, primary and secondary shrinkage cavity in gray cast iron were investigated. Two types of risering design for the cylindrically step-wise specimen, No. 1(progressive solidification) and No. 2(directional solidification) risering designs, were prepared and five different alloy compositions were casted. In the No. 1 risering design, external depression or primary shrinkage cavity due to liquid contraction was observed in all the specimens from ISO 150 to ISO 350. The primary shrinkage cavity was located right under the top surface or connected to the top surface, and was characterized by smooth surface. Its size increased with an increase in ISO number. However, neither secondary shrinkage cavity nor swollen surface was observed in all the castings. In the No.2 risering design, neither primary shrinkage cavity nor secondary shrinkage cavity was observed in all the specimens due to proper risering design. A swollen surface was also not observed in all the castings with the application of pep-set mold.

Understanding the Surface Magneto-optic Kerr Effect (표면 자기광 커 효과의 이해)

  • Hwang, Chan-Yong
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.4
    • /
    • pp.141-146
    • /
    • 2011
  • We will introduce the surface magneto-optic Kerr effect (SMOKE), which is one of the most helpful experimental methods in the area of surface magnetism for the last two decades. The basic magnetic characteristics of magnetic thin film is the most essential part for the further understanding and application. For example, the possibility of the realization of ferromagnetism for a single layer of iron, its Curie temperature far below that of bulk iron, and the direction of easy axis are the fundamental questions for the spintronic application. SMOKE is an efficient method to answer for the questions above.

THREE-BODY ABRASIVE WEAR IN A BALL-CRATERING TEST WITH LARGE ABRASIVE PARTICLES

  • Stachowiak, G.B.;Stachowiak, G.W.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.199-200
    • /
    • 2002
  • Three-body abrasive wear resistance of mild steel, low alloy steel (Bisalloy) and 27%Cr white cast iron was investigated using a ball-cratering test. Glass beads, silica sand, quartz and alumina abrasive particles with sizes larger than $100{\mu}m$ were used to make slurries. It was found that the wear rates of all three materials tested increased with time when angular abrasive particles were used and were rather constant when round particles were used. This increase in wear rates was mainly due to the gradual increase in ball surface roughness with testing time. Abrasive particles with higher angularity caused higher ball surface roughness. Mild steel and Bisalloy were more affected by this ball surface roughness changes than the hard white cast iron. Generally, three-body rolling wear dominated. The contribution of two-body grooving wear increased when the ball roughness was significant. More grooves were found when round particles were used or the size of the particles was decreased.

  • PDF

Formation Fe2O3 Nanowalls through Solvent-Assisted Hydrothermal Process and Their Application for Titan Yellow GR Dye Degradation

  • Ahmed, Khalid Abdelazez Mohamed
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.2
    • /
    • pp.205-209
    • /
    • 2014
  • Hematite iron oxide (${\alpha}$-$Fe_2O_3$) nanowalls were fabricated on aluminum substrate by a facile solvent-assisted hydrothermal oxidation process. The XRD and EDS patterns indicate that the sample has a rhombohedral phase of hematite $Fe_2O_3$. FE-SEM, TEM, HR-TEM, SA-ED were employed to characterize the resulting materials. $N_2$ adsorption-desorption isotherms was used to study a BET surface area. Their capability of catalytic degradation of titan yellow GR azo dye with air oxygen in aqueous solution over $Fe_2O_3$ catalysts was studied. The result indicates that the as-prepared product has a high catalytic activity, because it has a larger surface area. Langmuir and Freundlich isotherms of adsorption dye on the catalysts surface were investigated and the decomposition of titan yellow GR follows pseudo-first order kinetic.

Surface Alloying of Iron Base Rapid Solidification Materials Using Laser Beam (레이저 빔을 이용한 철계 급랭 응고 재료의 표면 합금화)

  • Nam, K.S.;Lee, K.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.4
    • /
    • pp.229-233
    • /
    • 1996
  • This work has been carried out to reduce the softening of heat affected zone on laser surface alloying. Iron based rapid solidification material with $Cr_{5-10}$, $V_{1-3}$, $Mo_{3-7}$, $W_{2-5}$, $B_{7-8}$, $C_{2-3}$, $Si_{0.5-1}at%$ was alloyed on the surface of SM45C steel. The excellent softening resistance in alloyed and heat affected zone showed, which could be attributed to the formation of stable high temperature precipitates.

  • PDF

Nucleation and Growth Mechanism of Sticking Phenomenon in Ferritic Stainless Steel (페라이트계 스테인레스강의 STICKING 발생 및 성장기구)

  • Jin, W.;Choi, J.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.373-382
    • /
    • 1999
  • Nucleation and growth process of sticking particle in ferritic stainless steels was investigated using a two disk type hot rolling simulator. The sticking behavior was strongly dependent on the surface roughness of a high speed steel roll(HSS) and the oxidation resistance of the ferritic stainless steels. A hot rolling condition with the lower oxidation resistance of the stainless steel and the higher surface roughness of HSS roll was more sensitive to sticking occurrence. It was also illucidated that the initial sticking particles were nucleated at the scratches formed on the roll surface and were served as the sticking growth sites. As rolling proceeded, the sticking particles grew sites. As rolling proceeded, the sticking particles grew by the process that the previous sticking particles provided the sticking growth sites.

  • PDF

Finite Element Analysis for Shot Blasting Process Optimization of Stainless Steel (유한요소해석을 이용한 스테인리스 스틸의 쇼트 블라스팅 공정 최적화)

  • Song, Seung Youp;Park, Junyoung;Kim, Jun-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • A shot blasting process is to improve the surface quality of stainless steels. The process is similar to a well-known shot peening that is used to strengthen the surface via the residual stress. In the shot blasting process, it is important to decide many parameters, such as the size, incident angle and velocity of shot balls, to effectively get rid of the iron oxide on the surface of stainless steels. In this study, the simulation of the shot blasting process is carried out by a finite element software, which can help to find out the optimal design parameters to cause the delamination of the iron oxide from the stainless steel substrate. The results obtained are also compared to those of the discrete element method to verify them.