• Title/Summary/Keyword: Iron storage protein

Search Result 31, Processing Time 0.329 seconds

Iron Accumulation in Transgenic Red Pepper Plants Introduced Fp1 Gene Encoding the Iron Storage Protein

  • Kim, Young-Ho;Lee, Young-Ok;Nou, Ill-Sup;Shim, Ill-Yong;Toshiaki Kameya;Takashi Saito;Kang, Kwon-Kyoo
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.6-12
    • /
    • 1998
  • The Fp1 gene, originally isolated from red pepper seedlings, encode the iron storage protein, and have a high homology with ferritin genes at DNA and amino acid level. In order to determine ferritin protein expression in vegetative tissue. Fp1 gene was constructed in plant expression vector(PIG12IHm) and introduced in red pepper(var. Bukang, Chungyang and Kalag-Kimjang 2) via Agrobacterium tumefaciensmediated transformation. After selection on MS media containing Kanamycin(Km), putatively selected transformants were confirmed by amplification of selectable marker gene(Fp1 and NPII) by polymerase chain reaction. Northern blot showed that transcripts of Fp1 gene were detected in mature leaves of the plants. In A6, A7 and A8 and A14 of transgenic plants, transcript of Fp1 gene was increased seven-fold to eight-fold than other transgenic plants. Also the proteins obtained from leaves of transgenic plants were immunologically detected by Western blot using rabbit anti-ferritin polyclonal antibody. The expression protein appeared as strong band of apparent mass of 23.5kDa. suggesting the iron accumulation in transgenic red pepper plants.

  • PDF

Transformation of Lettuce (Lactuce sativa L.) Using Iron Storage Protein Ferritin Gene (철 저장단백질 관련 Ferritin 유전자를 이용한 상추의 형질전환)

  • 김성하;노일섭;최장선;강권규
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.3
    • /
    • pp.147-151
    • /
    • 2001
  • Explants of Lactuce sativa cultivar, chungchima, were co-cultivated with Agrobacterium tumefaciences LBA4404, EHA101 strains containing nptll gene and ferritin gene encoding iron storage protein from soybean for transformation. Through initial selection of regenerated explants by culturing on a kanamycin and carbenicillin containing MS medium, multiple shoots were obtained after 2 months of culture. For a complementary step of selection, putative transgenic shoots were transferred to 1/2 MS basal medium supplemented with 100 mg/L kanamycin and 500 mg/L carbenicillin. The selected shoots were tested with PCR analysis using nptll, ferritin specific primers whether ferritin gene was introduced to genome of the plants. These results confirmed that produced the specific PCR bands in the putative transgenic lines. Additionally the Northern blot showed that transcripts of ferritin gene were detected in mature leaf of the transgenic lines. These results suggest that ferritin gene be successfully integrated and transcribed in the putative transgenic lettuce plants.

  • PDF

Isolation and Characterization of a Cdna ( Fp 1 ) Encoding the Iron Storage Protein in Red Pepper ( Capsicum annuum L. )

  • Kim, Ho-Young;Lee, Young-Ok;Noh, Ill-Sup;Kang, Hee-Wan;Kameya, Toshiaki;Saito, Takashi;Kang, Kwon-Kyoo
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.13-21
    • /
    • 1998
  • A cDNA Fragment encoding iron storage protrin generated by polymerase chain reaction(PCR) using highly conserved regions of ferritin related genes were used to sereen a red pepper cDNA library. cDNA clone was designated as Fp1. Fp1 clone contatines a 5' nontranslated region of 51dp containing stop conds. Down stream from 5' UTP. an open reading frame of 750bp was observed. followed by a 3' UTR of 272bp. The deduces amino acid sequence of red pepper protein(Fp1) showed 84%, 48% and 36% identity with soybean(SolC). human(HuL H) and horse spleen(HoS-L) ferritin mRNA accumulation in response to iron. Ferritin mRNA accumulation was transient and particularly abundant in leaves. reaching a maxmum at 12h. The level of ferritin mRNA in roots was affected to a lesser extent than in leaves.

  • PDF

A Survey on Iron Intake and Nutritional Status of Female College Students of Chungnam National University (충남대 여대생의 철분 섭취량과 영양 상태에 대한 연구)

  • 남혜선
    • Journal of Nutrition and Health
    • /
    • v.25 no.5
    • /
    • pp.404-412
    • /
    • 1992
  • Iron intake and nutritional status of 99 female college students of Chungnam Natiional Unive-rsity were estimateed with dietary survey and measurement of hematological indices including the level of serum ferritin Food intake was measured using the weighing method and iron availability per meal was calculated according to Monsen and Hallberg. The average daily intakes of protein vitamin C. total iron and also total available amount of iron were higher than the Korean R.D.A. The blood indices for iron status however showed that iron status of the subjects was inade-quate. Furthermore the serum ferritin levels indicated marginal iron storage in 75% of the subjects.

  • PDF

Gene Expression and Iron Accumulation in Progeny of Transformants Introduced Fp1 Gene Encoding the Iron Storage Protein in Red Pepper (Capsicum annuum L.)

  • Kang, Kwon-Kyoo;Kim, Young-Ho
    • Plant Resources
    • /
    • v.4 no.1
    • /
    • pp.26-30
    • /
    • 2001
  • To improve the iron content of red pepper, we have transferred the entire coding sequence of the ferritin gene(Fpl) into Capsicum annuum (L. cv. Chungyang and Bukang) by Agrobacterium mediated transformation. Transformants were found to contain the Fp1 gene at up to three loci, increased distinct iron content changes. In transgenic plants, iron content was as much as 7-fold to 8-folds greater than that of their untransformed counterparts. Furthermore, the Rl progenies from transformant(A7, A8) co-segregated into a 15:1 ratio for both Kanamycin resistance and genotype of high iron.

  • PDF

Assessment of Dietary Iron Availability and Analysis of Dietary Factors Affecting Hematological Indices in Iron Deficiency Anemic Female High School Students (철결핍성 빈혈 여고생의 철분이용률 평가 및 철분영양지표에 영향을 미치는 영양요인 분석)

  • 안홍석
    • Journal of Nutrition and Health
    • /
    • v.32 no.7
    • /
    • pp.787-792
    • /
    • 1999
  • The purpose of this study was to estimate the iron availability and to analyze dietary factors which influence hematological indices of 130 female adolescents with iron deficiency anemia. Intakes of iron and other nutrients were estimated using a self-administrated questionnaire combined with the 24-hour recall mehtod and iron availability was calculated by Monsen's method. Mean daily intakes of calorie, protein and vitamin C were 1631.0kcal(77.7% of RDA), 54.7g(84.2% of RDA) and 45.7mg(83.0% of RDA), respectively. In terms of iron, mean daily intake was 8.7mg(48.3% of RDA) and heme iron intake was 3.0mg which correspond to 34% of total iron intake. The amount of total absorbable iron was 1.5mg and the estimated bioavailability of dietary iron was 17.2%. In summary, intake of several nutrients for most of the subjects were under RDA. Dietary factors affecting hematological indices were analyzed by stepwise multiple regression. Intake of vitamin C was a major determinant of Hb level, while both intake of enhancing factor and iron availability were major determinants of serum ferritin level. In conclusion proper nutritional education and guidance for iron deficiency anemic female adoalescent needs to be developed and to improve their iron storage should be increased intakes of enhancing factors, female adoalescents.

  • PDF

Molecular Cloning of a cDNA Encoding a Ferritin Subunit from the Spider, Araneus ventricosus

  • Jin, Byung-Rea;Han, Ji-Hee;Kim, Seong-Ryul;Sohn, Hung-Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.2
    • /
    • pp.163-168
    • /
    • 2002
  • We report for the first time the cDNA sequence encoding a ferritin subunit from the spiders Araneus ventricosus. The complete cDNA sequence of A. ventricosus ferritin subunit comprised 516 bp with 172 amino acid residues. The A. ventricosus ferritin subunit cDNA contained a conserved iron responsive element sequence in the 5 untranslated region. An alignment of the deduced protein sequence of the A. ventricosus ferritin subunit gene to that of other heavy chain ferritin molecules showed that A. ventricosus ferritin subunit is most similar to the great pond snail, Lymnaea stagnalis, ferritin with 70.2% of protein sequence identity.

Causes of Hyperferritinemia and Red Blood Cell Transfusion (고페리틴혈증의 원인과 적혈구 수혈)

  • Kim, Mi Seon;Kim, Sun Hyung
    • The Korean Journal of Blood Transfusion
    • /
    • v.29 no.3
    • /
    • pp.273-281
    • /
    • 2018
  • Background: Ferritin is used to detect iron overload in patients with chronic red blood cell transfusions. Although ferritin reflects the amount of iron storage in the body, it may increase nonspecifically in inflammation and infection. This study analyzed the cause of increased ferritin and the association with a red blood cell (RBC) transfusion. Methods: The medical records of patients who visited the authors' hospital from January to December 2017 and underwent a ferritin test were reviewed retrospectively. Hyperferritinemia was defined as a ferritin level more than 1,000 ng/mL. The causes of hyperferritinemia were investigated by examining the laboratory findings and medical records. Results: The results revealed 417 cases of hyperferritinemia in 238 patients during the period. The most common diseases were hematologic malignancies from 125 cases (30.0%) in 31 patients and infectious diseases were the second most common. Iron overload was suspected in 119 cases in 33 patients, and 12 patients (76 cases) were transfused with more than 8 units of RBC for 1 year before the test. Conclusion: In hyperferritinemia, the rate of iron overload is high considering the underlying diseases and chronic RBC transfusion. To determine iron storage status accurately, it will be helpful to measure the C-reactive protein (CRP) and iron saturation in the ferritin test. Careful attention should be paid to habitual iron formulations and frequent transfusions due to the possibility of iron overload.

Functional Assembly of Recombinant Human Ferritin Subunits in Pichia pastoris

  • Lee, Jung-Lim;Park, Cheon-Seok;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1695-1699
    • /
    • 2007
  • Ferritin is an iron storage protein found in most living organisms as a natural assembled macromolecule. For studying the functional ability of the ferritin assembly, human H- and L-ferritins were expressed and purified from Pichia pastoris strain GS115. The recombinant H- and L-ferritins showed a globular form with transmission electron microscopy. The rate of iron uptake for H-ferritin was significantly faster than that for the L-ferritin in vitro. By gel permeation chromatography analysis, recombinant ferritins were confirmed as multimeric subunits with high molecular weight and it was indicated that assembled subunits were able to store iron in vivo.

Purification and Glycosylation Pattern of Human L-Ferritin in Pichia pastoris

  • Lee, Jong-Lim;Yang, Seung-Nam;Park, Cheon-Seok;Jeoung, Doo-Il;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.68-73
    • /
    • 2004
  • Ferritin is an iron storage protein found in most living organisms. For expression and industrial use, human light chain ferritin (L-ferritin) was cloned from human liver cDNA library and expressed in Pichia pastoris strain GS115. The recombinant L-ferritin in Pichia pastoris was glycosylated. In a fed-batch culture, the cell mass reached about 57 g/l of dry cell weight, and the L-ferritin in the cell was increased to about 95 mg/l after 150 h. In an atomic absorption spectrometry analysis, the intracellular content of iron in the L-ferritin transformant was measured as $1,694{\pm}85\;\mu\textrm{g}g/g$, which is 5.4-fold more than that of the control strain. This L-ferritin transformant could serve as iron-fortified nutrients in animal feed stock.