• Title/Summary/Keyword: Iron powder metallurgy

Search Result 157, Processing Time 0.021 seconds

Effect of Process Temperature on the Sm2Fe17 Alloying Process During a Reduction-Diffusion Process Using Fe Nanopowder (Fe 나노분말을 사용한 환원-확산공정에서 Sm2Fe17 합금상형성에 미치는 공정온도의 영향)

  • Yun, Joon-Chul;Lee, Geon-Yong;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.995-1002
    • /
    • 2010
  • This study investigated the effect of process temperature on the alloying process during synthesis of $Sm_2Fe_{17}$ powder from ball-milled samarium oxide ($Sm_2O_3$) powders and a solid reducing agent of calcium hydrides ($CaH_2$) using iron nanopowder (n-Fe powder) by a reduction-diffusion (R-D) process. The $n-Fe-Sm_2O_3-CaH_2$ mixed powders were subjected to heat treatment at $850{\sim}1100^{\circ}C$ in $Ar-H_2$ for 5 h. It was found that the iron nanopowders in the mixed powders are sintered below $850^{\circ}C$ during the R-D process and the $SmH_2$ is synthesized by a reduced Sm that combines with $H_2$ around $850^{\circ}C$. The results showed that $SmH_2$ is able to separate Sm and $H_2$ respectively depending on an increase in process temperature, and the formed $Sm_2Fe_{17}$ phase on the surface of the sintered Fe nanopowder agglomerated at temperatures of $950{\sim}1100^{\circ}C$ in this study. The formation of the $Sm_2Fe_{17}$ layer is mainly due to the diffusion reaction of Sm atoms into the sintered Fe nanopowder, which agglomerates above $950^{\circ}C$. We concluded that nanoscale $Sm_2Fe_{17}$ powder can be synthesized by controlling the diffusion depth using well-dispersed Fe nanopowders.

Synthesis of ${\beta}-FeSi_2$ Powder by Mechanical Alloying Process (기계적 합금화법에 의한 ${\beta}-FeSi_2$ 분말 함성)

  • 이충효;조재문;김환태;권영순
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.104-109
    • /
    • 2001
  • The semiconducting ${\beta}-FeSi_2$ compound has been recognized as a thermoelectric material with excel-lent oxidation resistance and stable characteristics at elevated temperature. In the present work, we applied mechanical alloying(MA) technique to produce ${\beta}-FeSi_2$ compound using a mixture of elemental iron and silicon powders. The mechanical alloying was carried out using a Fritsch P-5 planetary mill under Ar gas atmosphere. The MA powders were characterized by the X-ray diffraction with Cu-K $\alpha$ radiation, thermal analysis and scanning electron microscopy. The single ${\beta}-FeSi_2$ phase has been obtained by mechanical alloying of $Fe_{33}Si_{67}$ mixture powders for 120 hrs or for 70 hrs coupled with the subsequent heat treatment up to $700^{\circ}C$. The grain size of ${\beta}-FeSi_2$ powders analyzed by Hall plot method was 44nm.

  • PDF

Fabrication of Deep-Sub-Millimeter-Thick Compacts Using Spark Plasma Sintering

  • Ohashi, T.;Tanaka, T.;Oshiro, K.;Fujimori, H.;Kurisu, H.;Matsuura, M.;Yamamoto, S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.270-271
    • /
    • 2006
  • Nd-Fe-B type powder was sintered using spark plasma sintering method. Fabricated compact sintered at the temperature of $700\;^{\circ}C$, is found to be a composite magnet with Nd-Fe-Co-B and ${\alpha}-Fe$. The compact sintered at $700\;^{\circ}C$ shows slightly low coercivity and large remanent magnetization comparing to the compact sintered at $600^{\circ}C$ due to the formation of ${\alpha}-Fe$ phase, resulting in the large maximum energy product. Maximum energy product tends to decrease with decreasing thickness of sintered compacts below 0.5 mm in thickness.

  • PDF

Quantitative Analysis of Roughness of Powder Surface Using Three-Dimensional Laser Profiler and its Effect on Green Strength of Powder Compacts (분말 표면 조도의 3차원 레이저 분석기를 이용한 정량화와 압분성형체 강도에 미치는 영향 분석)

  • Lee, Dong-Jun;Yoon, Eun-Yoo;Kim, Ha-Neul;Kang, Hee-Soo;Lee, Eon-Sik;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.406-410
    • /
    • 2011
  • Green strength is an important property of powders since high green strength guarantees easy and safe handling before sintering. The green strength of a powder compact is related to mainly mechanical and surface characters, governed by interlocking of the particles. In this study, the effect of powder surface roughness on the green strength of iron powders was investigated using a transverse rupture test. Three-dimensional laser profiler was employed for quantitative analyses of the surface roughness. Two different surface conditions, i.e. surface roughness, of powders were compared. The powders having rough surfaces show higher green strength than the round surface powders since higher roughness leads increasing interlocked area between the contacting powders.

Fabrication and Characterization of Immiscible Fe-Cu Alloys using Electrical Explosion of Wire in Liquid

  • Phuc, Chu Dac;Thuyet, Nguyen Minh;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.449-457
    • /
    • 2020
  • Iron and copper are practically immiscible in the equilibrium state, even though their atomic radii are similar. As non-equilibrium solid solutions, the metastable Fe-Cu alloys can be synthesized using special methods, such as rapid quenching, vapor deposition, sputtering, ion-beam mixing, and mechanical alloying. The complexity of these methods (multiple steps, low productivity, high cost, and non-eco-friendliness) is a hinderance for their industrial applications. Electrical explosion of wire (EEW) is a well-known and effective method for the synthesis of metallic and alloy nanoparticles, and fabrication using the EEW is a simple and economic process. Therefore, it can be potentially employed to circumvent this problem. In this work, we propose the synthesis of Fe-Cu nanoparticles using EEW in a suitable solution. The powder shape, size distribution, and alloying state are analyzed and discussed according to the conditions of the EEW.

Fabrication of Metallic Particle Dispersed Ceramic Based Nanocomposite Powders by the Spray Pyrolysis Process Using Ultrasonic Atomizer and Reduction Process

  • Choa, Y.H.;Kim, B.H.;Jeong, Y.K.;Chae, K.W.;T.Nakayama;T. Kusunose;T.Sekino;K. Niibara
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.151-156
    • /
    • 2001
  • MgO based nanocomposite powder including ferromagnetic iron particle dispersions, which can be available for the magnetic and catalytic applications, was fabricated by the spray pyrolysis process using ultra-sonic atomizer and reduction processes. Liquid source was prepared from iron (Fe)-nitrate, as a source of Fe nano-dispersion, and magnesium (Mg)-nitrate, as a source of MgO materials, with pure water solvent. After the chamber were heated to given temperatures (500~$^800{\circ}C$), the mist of liquid droplets generated by ultrasonic atomizer carried into the chamber by a carrier gas of air, and the ist was decomposed into Fe-oxide and MgO nano-powder. The obtained powders were reduced by hydrogen atmosphere at 600~$^800{\circ}C$. The reduction behavior was investigated by thermal gravity and hygrometry. After reduction, the aggregated sub-micron Fe/MgO powders were obtained, and each aggregated powder composed of nano-sized Fe/MgO materials. By the difference of the chamber temperature, the particle size of Fe and MgO was changed in a few 10 nm levels. Also, the nano-porous Fe-MgO sub-micron powders were obtained. Through this preparation process and the evaluation of phase and microstructure, it was concluded that the Fe/MgO nanocomposite powders with high surface area and the higher coercive force were successfully fabricated.

  • PDF

Development of a CAE Tool for P/M Compaction Process and Its Application (금형압축성형공정 해석용 CAE 프로그램 개발 및 적용)

  • Chung Suk-Hwan;Kwon Young-Sam
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.399-411
    • /
    • 2004
  • Crack generation during die compaction and distortion during sintering have been critical problems for the conventional pressing and sintering process. Until now, trial and error approach with engineers' industrial experiences has been only solution to protect the crack generation and distortion. However, with complexity in shape and process it is very difficult to design process conditions without CAE analysis. We developed the exclusive CAE software (PMsolver/Compaction) for die compaction process. The accuracy of PMsolver is verified by comparing the finite element simulation results with experimental results. The simplified procedures to find material properties are proposed and verified with iron based powder and tungsten carbide powder. Based on the accurate simulation result by PMsolver, the optimal process conditions are designed to get uniform density distribution in a powder compact after die compaction process by using a derivative based optimization scheme. In addition, the effect of non-uniform density distribution in a powder compact on distortion during sintering is shown in case of the fabrication of tungsten carbide insert.

Development of Hybrid Insulating Coating for Fe-based Soft Magnetic Powder (철계 연자성 분말용 하이브리드 절연 코팅막 개발)

  • Kim, Jungjoon;Kim, Sungyeom;Kim, Youngkyun;Jang, Taesuk;Kim, Hwi-jun;Kim, Youngjin;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.233-238
    • /
    • 2021
  • Iron-based amorphous powder attracts increasing attention because of its excellent soft magnetic properties and low iron loss at high frequencies. The development of an insulating layer on the surface of the amorphous soft magnetic powder is important for minimizing the eddy current loss and enhancing the energy efficiency of high-frequency devices by further increasing the electrical resistivity of the cores. In this study, a hybrid insulating coating layer is investigated to compensate for the limitations of monolithic organic or inorganic coating layers. Fe2O3 nanoparticles are added to the flexible silicon-based epoxy layer to prevent magnetic dilution; in addition TiO2 nanoparticles are added to enhance the mechanical durability of the coating layer. In the hybrid coating layer with optimal composition, the decrease in magnetic permeability and saturation magnetization is suppressed.

Synthesis and Microstructure of Fe(C) Nanocapsules by Chemical Vapor Condensation (화학기상응축공정으로 제조한 Fe(C) 나노캡슐의 합성 및 미세구조)

  • Lee Jung-Han;Kim Sung-Duk;Kim Jin-Chun;Choi Chul-Jin;Lee Chan-Gyu
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.515-521
    • /
    • 2004
  • Fe(C) nanocapsules were prepared by the chemical vapor condensation(CVC) process using the pyrolysis of iron pentacarbonyl $(Fe(CO)_5)$. Their characterizations were studied by means of X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy. The long-chained Fe(C) nanocapsules hav-ing the mean size of under 70 nm could be obtained below $1100^{\circ}C$ in different gas flow rates. The particle size of the powders was increased with increasing decomposition temperature, but it was decreased with increasing CO gas flow rate. The Fe powders produced at $500^{\circ}C$ consisted of three layers of ${\alpha}$-Fe/$Fe_3C$/amorphous phases, but it had two phase core-shell structure which consited of $Fe_3C$ phase of core and graphite of shell at $1100^{\circ}C$.

Solid State Reduction of Haematite by Mechanical Alloying Process (기계적 합금화법에 의한 헤마타이트의 고상환원)

  • 이충효;홍대석;이만승;권영순
    • Journal of Powder Materials
    • /
    • v.9 no.1
    • /
    • pp.25-31
    • /
    • 2002
  • The efects of mechanical aloying conditions and the type of reducing agent on the solid state reductionof haematite $Fe_2O_3$ have been investigated at room temperature. Aluminium titanium zinc and copper were used as reducing agent. Nanocomposites of metal-oxide in which oxide particles with nano size were dispersed in Fe matrix were obtained by mechanical alloying of $Fe_2O_3$ with aluminium and titanium respectively However the reduction of $Fe_2O_3$ by coppe was not occurred Composite materials of iron with $Al_2O_3$ and $TiO_2$ were obtained from the system of $Fe_2O_3-Al$ and $Fe_2O_3-Ti$ after ball milling for 20 hrs and 30 hrs respectively. And the system of $Fe_2O_3-Zn$ resulted in the formationof FeO with ZnO after ball milling of 120 hrs. The final grain sizes of iron estimated by X-ray diffraction line-width measurement were in the ranges of 24~33 nm.