• Title/Summary/Keyword: Iron by-product

Search Result 228, Processing Time 0.031 seconds

An Experimental Study on the fluidity properties of Polymer Concrete According to Replacement Ratio of Rapidly-Chilled Steel Slag and polymer resin (급냉 제강 슬래그 대체율과 폴리머 수지에 따른 폴리머 콘크리트의 유동특성에 관한 실험적 연구)

  • Choi, Duck-Jin;Kim, Jae-Won;Sun, Joung-Soo;Kim, Ha-Suk;Hwang, Eui-Hwan;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.75-78
    • /
    • 2007
  • The steel slag, a by-product which is produced by refining pig iron during the manufacture of steel, is mainly used as road materials after aging. It is necessary to age steel slag for long time in air because the reaction with water and free-CaO in steel slag could make the expansion of volume. This problem prevents steel slag from being used as aggregate for concrete. However, steel slag used in this study was controled by a air-jet method which rapidly cools substance melted at a high temperature. The rapidly-chilled method would prevent from generation of free-CaO in steel slag. Also, Molten steel slag rapidly-chilled by air in high speed becomes a fine aggregate of nearly spherical shape. This study dealt with the influence of the using rate of rapidly-chilled steel slag and polymer resin on fluidity of polymer concrete, as a results Since RCSS has spherical shape and high density, up to replacement ratio of 100%, increases concrete fluidity under same polymer content and decrease polymer content in order to secure the same fluidity

  • PDF

The Thermal and Mechanical Properties of Epoxy Composites Including Boron Carbide Surface Treated with Iron Oxide and Tungsten (철산화물과 텅스텐으로 표면 처리된 보론카바이드를 포함하는 에폭시 조성물의 열적·기계적 물성)

  • Kim, Taehee;Lee, Wonjoo;Seo, Bongkuk;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.19 no.3
    • /
    • pp.113-117
    • /
    • 2018
  • Boron carbide is lower in hardness than diamond or boron nitride but has a hardness of more than 30 GPa and is used for manufacturing tank armors and ammo shells due to its high hardness. It is also used as a neutron absorber due to its ability to absorb neutrons, which is increasing its use in nuclear power projects. Neutrons have no interaction with electrons and are known to pass through the material without interactions. Along with boron carbide, the atoms with high interaction with neutrons are hydrogen, and high hydrogen concentration polyesters and epoxy polymers including boron are used as materials for manufacturing products for nuclear power generation waste. In this paper, the surface of boron carbide is treated with iron oxide and tungsten to improve interaction between modified boron carbide and epoxy polymer. XRD and XPS were used to confirm that iron oxide and tungsten are well attached on the surface of boron carbide, respectively. The mechanical strength of the surface treated boron carbide was measured by a universal testing machine (UTM) and the dynamic characteristics of the cured product were observed by using a dynamic analyzer (DMA).

The metal corrosion caused by museum indoor air pollutants (박물관 실내 대기오염물질에 의한 금속 부식 영향)

  • Kang, Dai-Ill
    • Journal of Conservation Science
    • /
    • v.22
    • /
    • pp.5-14
    • /
    • 2008
  • The effect of air pollutants coming from internal museum materials such as wood-based products and cements on metal corrosion have been investigated. The Oddy test and the Chamber test was employed as a corrosion test. The metal pieces after the Oddy test had different corrosion types caused by the internal museum materials. The most effective wood based product was 18T HS(E0) and 9mm plywood(F0,E0). Iron(Fe) and copper(Cu) also bronze of the Chamber test had corrosion caused by Formic acid, Acetic acid, and Acetaldehyde. The packing materials in high humidity had caused more corrosion on the surface of the metal pieces than in low humidity.

  • PDF

The Structure and Standardization of Mold Base for Recycling (재활용을 위한 몰드베이스 구조 및 표준화)

  • 제덕근;한성렬;송준엽;정영득
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.225-231
    • /
    • 2003
  • The injection molding is a traditional manufacturing method that can make plastic parts by just one time in mold. Therefore, the injection molding has become one of a manufacturing method, which is widely applied in a producing of plastic products. Nowadays, to use of plastic parts has increased and plastic product-model using term has been shorten. By these reasons, using term of a injection mold has fast been reduced. These produced molds will be disused and leaved in a storage after a regular term to use it. These leaved molds are sometime sold as scrap iron. But, these molds have lots parts for recycling except special parts for example, cavities, cores and eject pins, etc. In this research, we investigated when the cavity and core of in injection mold would be changed, the injection mold could be recycled. We suggested the structures and standardizations for recycling of a moldbase. We also developed a program in which can be used when the recycling moldbase design in the Auto-CAD with the recycling standards. We called this program as the Recy-Mold. For the availability of the program and moldbase structure fur the recycling standards, we experimented a used mold for automobile lens, which was remanufactured by the recycling standard. The results of this test showed feasibility for the recycling mold.

The Effect of Roll Arrangement in the Cold Rolling Mill on the Wear (냉간 압연기용 롤의 배열이 마멸에 미치는 영향)

  • 손영지
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.74-80
    • /
    • 1999
  • Work roll wear in the cold rolling of mild steel strip is strongly affected by rolling materials, rolling conditions such as roll arrangement in the cold rolling mill and lubrication. The tests were performed to find the effects of roll arrangement n the cold rolling mill on the work roll wear under the same lubricating conditions. The obtained results are as follows:If the distance of cold rolling is about 60km, the surface roughness of its was reduced by half(Ra 0.49${\mu}{\textrm}{m}$) and Pc(peak count) also was decreased to 60 ea/cm.It is easier for CC(Continuous casting) to make a slip on rolling than IC(Ingot casting). It is due to surface mirror in which first residual product appears and iron powder included Al2O3 is sticked. Because bending degree of 4Hi-rolling mill is higher than 6Hi-rolling mill, the first surface mirror was occurred to its center-point which is loaded strongly. 6Hi-rolling mill shape-controlled by intermediate roll doesn't need the initial crown to work roll. Therefore, fatigue and wear would appear a little bit.

  • PDF

The Properties of Fluidity and Compressive Strength of Unsaturated Polyester Polymer Concrete According to Replacement Ratio of Rapidly-Chilled Steel Slag Fine aggregate (급냉 제강 슬래그 잔골재 대체율에 따른 불포화 폴리에스테르 폴리머 콘크리트의 유동성 및 압축강도 특성)

  • Kim, Jae-Won;Seo, Jung-Pil;Sun, Joung-Soo;Chi, Duck-Jin;Hwang, Eui-Hwan;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.43-46
    • /
    • 2007
  • This study dealt with the influence of the replacement ratio of rapidly-chilled steel slag on fluidity and compressive strength of unsaturated polyester polymer concretes. The rapidly-chilled steel slag used in this study, a by-product which is produced by refining pig iron during the manufacture of steel, was controled by a air-jet method which rapidly cools substance melted at a high temperature. Experimental results show that fluidity and compressive strength of unsaturated polyester polymer concretes increase with increasing replacement ratio of rapidly-chilled steel slag. Use of rapidly-chilled steel slag was found to be effective for improving fluidity and compressive strength of rapidly-chilled steel slag.

  • PDF

Effect of Phospho-gypsum on reduction of methane emission from rice paddy soil

  • Ali, Muhammad Aslam;Lee, Chang-Hoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.131-140
    • /
    • 2007
  • Phospho-gypsum a primary waste by-product in phosphate fertilizer manufacturing industry and a potential source of electron acceptors, such as mainly of sulfate and a trace amount of iron and manganese oxides, was selected as soil amendment for reducing methane $(CH_4)$ emissions during rice cultivation. The selected amendment was added into potted soils at the rate of 0, 2, 10, and 20 Mg $ha^{-1}$ before rice transplanting. $CH_4$ flux from the potted soil with rice plant was measured along with soil Eh and floodwater pH during the rice cultivation period. $CH_4$ emission rates measured by closed chamber method decreased with increasing levels of phospho-gypsum application, but rice yield markedly increased up to 10 Mg $ha^{-1}$ of the amendment. At this amendment level, total $CH_4$ emissions were reduced by 24% along with 15% rice grain yield increment over the control. The decrease in total $CH_4$ emission may be attributed due to shifting of electron flow from methanogenesis to sulfate reduction under anaerobic soil conditions.

Prediction of compressive strength of GGBS based concrete using RVM

  • Prasanna, P.K.;Ramachandra Murthy, A.;Srinivasu, K.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.691-700
    • /
    • 2018
  • Ground granulated blast furnace slag (GGBS) is a by product obtained from iron and steel industries, useful in the design and development of high quality cement paste/mortar and concrete. This paper investigates the applicability of relevance vector machine (RVM) based regression model to predict the compressive strength of various GGBS based concrete mixes. Compressive strength data for various GGBS based concrete mixes has been obtained by considering the effect of water binder ratio and steel fibres. RVM is a machine learning technique which employs Bayesian inference to obtain parsimonious solutions for regression and classification. The RVM is an extension of support vector machine which couples probabilistic classification and regression. RVM is established based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Compressive strength model has been developed by using MATLAB software for training and prediction. About 70% of the data has been used for development of RVM model and 30% of the data is used for validation. The predicted compressive strength for GGBS based concrete mixes is found to be in very good agreement with those of the corresponding experimental observations.

Development of Korean Type Up-cycled Design Products (한국적 업사이클링 디자인 제품개발)

  • Han, Jihae;Kim, Seongdal
    • Journal of Fashion Business
    • /
    • v.23 no.4
    • /
    • pp.127-139
    • /
    • 2019
  • Up-cycling has evolved from its original form of the simple recycling of waste, into an industry of its own that has been gaining momentum. In many developed industries, up-cycling is increasingly seen as an 'environmentally-friendly way of production and ethical way of consumption'. However, an examination of the designs of branded up-cycled products suggests that there is a need for product development fueled by further research on materials. The purpose of this study is to introduce various production methods that can overcome the shortcomings of using waste material and Korean motifs for use in product development, which ultimately contribute to enhancing the potential variety and character of up-cycled products. In order to do so, the up-cycling industry was examined to define key concepts, domestic and overseas markets were surveyed, and case analyses were conducted on domestic and foreign up-cycling brands. In addition, after tracking how leather is discarded and accumulated as waste and then collecting the discarded leather, the properties of the material were analyzed. A study of Korean motifs was followed by the concept summary, and upcycling design expressions that exemplify Korean images were identified. The following two novel methods were used to create six up-cycled bags using collected discarded leather. First, lucky bags and moon pots were selected from various Korean motifs in order to use motifs with identifiable features. Secondly, different variations of cutting and attachment methods were used, including iron mold production methods and presses.

Effect of Precipitates on Hot Ductility Behavior of Steel Containing Ti and Nb (Ti-Nb 합금강에서 합금성분의 변화에 따른 석출물거동이 고온연성에 미치는 영향)

  • Han, Won Bae;Lee, Jong Ho;Kim, Hee-Soo;An, Hyeun Hwan;Lee, Seung Jae;Kim, Seong Woo;Seo, Seok Jong;Yoon, Chong Seung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.285-292
    • /
    • 2012
  • Hot ductility behavior of precipitation-hardened low-carbon iron alloys containing 0.02 wt% Ti and 0.05 wt% Nb was characterized by a hot tensile stress test. Carbon (0.05, 0.1, 0.25 wt%) and boron (0.002 wt%) contents were varied to study the effect of precipitates on the high-temperature embrittlement of the alloys in the temperature range of $600{\sim}800^{\circ}C$. Ductility loss was observed at $700^{\circ}C$ for the tested alloys. The cause of the ductility loss was mainly attributed to the carbides and ferrite films formed at the grain boundaries during deformation. Although the carbon content tended to raise the total fraction of Nb (C, N), the precipitates were formed mostly in the grain interior as the precipitation temperature was raised above the deformation temperature by the high carbon content. Hence, carbon in excess suppressed the hot ductility loss. Meanwhile, boron addition improved the hot ductility of the alloys. The improvement is likely due to the boron atoms capturing carbon atoms and thus retarding the carbide formation.