• Title/Summary/Keyword: Iron accumulation

Search Result 103, Processing Time 0.032 seconds

A Case of Pulmonary Siderosis Mimicking Metastatic Lung Cancer (전이성 암종으로 오인된 철폐증 증례 1예)

  • Koo, So-My;Park, Sung-Woo;Park, Jong-Sook;Lee, June-Hyuk;Jang, An-Soo;Kim, Do-Jin;Park, Choon-Sik;Paik, Sang-Hyun;Koh, Eun-Suk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.1
    • /
    • pp.58-62
    • /
    • 2011
  • Pulmonary siderosis is a pneumoconiosis caused by chronic iron inhalation. A diagnosis of pulmonary siderosis is based on a patient history of iron inhalation, on chest radiographic findings, and on accumulation of iron oxide in macrophages within the lung. A typical radiographic finding of pulmonary siderosis includes ill-defined micronodules that are diffusely distributed in the lung. We experienced a 52-year-woman with a $1.3{\times}1.5$-cm mass in the left upper lobe with multiple nodules in both lungs. Because the radiographic findings were atypical, we conducted a video-assisted thorascopic lung biopsy procedure to exclude the diagnosis of metastatic lung cancer. After confirming iron deposition in the lung tissue and knowing the patient's occupational history of welding iron, we concluded that this was a case of pulmonary siderosis.

Combined Effects of Iron and Zinc on Accumulation of Lead in Some Organs of Rats (아연(亞鉛)과 철분(鐵分) 동시투여(同時投與)가 백서(白鼠)의 장기내(臟器內) 연함량(鉛含量)에 미치는 영향(影響))

  • Ohm, Hyung-Taek;Song, Dong-Bin;Cha, Chul-Whan
    • Journal of Preventive Medicine and Public Health
    • /
    • v.16 no.1
    • /
    • pp.19-24
    • /
    • 1983
  • In order to study the effects of iron and zinc on the lead poisoning of rats, lead with iron and zinc, or lead alone were administered orally to a total of 98 adult rats of Sprague-Dawley Species. The concentrations of lead, zinc, and iron were measured by atomic absorption spectrophotometer at every 20 days intervals of 20th, 40th, 60th, 80th and 120th day as a final measurement. Those datas were analysed and compared with those of control groups. The results were summarized as follows; 1. The concentration of lead in blood, bone. and liver tissues kept increasing in case of lead exposure group whereas it started decreasing at 60-80th day when concentration of zinc started increasing in case of combined exposure group. However, in kidney tissue, the concentration of lead in combined exposure group kept increasing up to the end of observation showing special high concentration at the final measurement at 120th day. 2. Concentration of zinc in blood and liver tissues had increased from 60-80th day in case of combined exposure group. 3. Concentration of iron in blood showed decreasing from $44.15{\pm}9.67\;to\;32.44{\pm}2.69{\mu}g/ml$ in case of lead exposure group, whereas it showed constant level of $47.50{\sim}45.65{\mu}g/ml$. However, in liver tissue it kept constant as control did from 40th to 60th days, but from 100th day on it started increasing to show much higher concentration than control.

  • PDF

Improvement of Salt Accumulated Soil and Crop Growth using Coal Ash (석탄회를 이용한 염류집적 토양 개선과 작물 생육 증진)

  • Lee, Jong Cheol;Oh, Se Jin;Kang, Min Woo;Kim, Young Hyun;Kim, Dong Jin;Lee, Sang Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.2
    • /
    • pp.83-91
    • /
    • 2021
  • BACKGROUND: Cultivation area using agricultural plastic film facilities in Korea is rapidly increasing every year; however, it accelerates the salt accumulation in soils due to repeated cultivation and excessive use of chemical fertilizers. Coal ash contains various trace elements and has high potential to be used in agricultural purposes. This research was aimed to improve the quality of salts-accumulated soils and crop growth grown in the plastic film facilities using the soil amendment derived from coal ash and zero-valent iron powder. METHODS AND RESULTS: Soil amendment used in the study was manufactured using coal ash with iron powder and subjected to a typical upland soil for soil quality enhancement and two salts-accumulated soils for crop growth. After one month incubation of the salts-accumulated soils treated with the soil amendment, soil pH increased significantly and soil EC decreased by approximately 50%, compared to the control or the treatment without the soil amendment. Since the soil salts' concentration is proportional to EC, the subjected soil amendment can be proposed as an effective way to overcome soil salts accumulation in agricultural plastic film facilities. For crop growth, the length of roots and stems increased by approximately 10% and the dry weight also increased by a maximum of 75%, compared to the control. CONCLUSION: The soil amendment made from waste resources such as coal ash and zero-valent iron was found to not only be effective in improving salt-accumulated soils and crop yield but also be safe against harmful heavy metals.

Clinico-pathological studies on the experimental cadmium pisoning in dogs (실험적 카드뮴 중독견의 임상병리학적 관찰)

  • Lee, Sang-gwan;Lee, Hyun-beom
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.2
    • /
    • pp.471-482
    • /
    • 1996
  • These experiments were undertaken in order to find out the useful clinicopathological diagnostic methods of cadmium poisoning in dogs. Twenty-one dogs were divided into a control group and 6 experimental groups. The experimental groups were adminstered orally 5, 10, 15, 30, 60 and 120mg of cadmium per kg of body weight for 56 days. All dogs were examined for clinical signs, and weekly changes in hematological and blood chemical values. All dogs were necropsied on 57th days of experiment. Tissue samples including hair, skin, muscle, lung, liver, kidney, spleen, pancreas, testis, ovary, uterus, and bone were collected and analyzed for cadmium, zinc, iron and copper contents using atomic absorption spectrophotometer. From these experiments following results were obtained : 1. All experimental dogs showed vomitting, salivation, anorexia, decreased water-intake, dehydration, and marked weight loss. The dogs received 30mg/kg or more of cadmium died during the period from 2nd to 7th week after administration. 2. Hematologically, all experimental dogs showed decrease in erythrocyte count, hemoglobin concentration, and packed cell volume. The anemia was identified as normocytic and regenerative morphologically. 3. No significant differences in serum glutamic oxaloacetic transminase, glutamic pyruvic transaminase, blood urea nitrogen, and cholosterol value were obseved between the control and experimental dogs. 4. The cadmium contents in various tissues of experimental dogs were estimated as $37.8{\sim}201.8{\mu}g/g$ in bone, $14.1{\sim}49.5{\mu}g/g$ in liver, $13.2{\sim}53.1{\mu}g/g$ in kidney, $0.4{\sim}35.2{\mu}g/g$ in pancreas, $0.8{\sim}35.4{\mu}g/g$ in spleen, $0.9{\sim}30.1{\mu}g/g$ in hair, $0{\sim}7.1{\mu}g/g$ in lung, $0{\sim}5.1{\mu}g/g$ in skin, and $0{\sim}3.6{\mu}g/g$ in muscle, respectively. However, the serum, testis, ovary and uterus showed no cadmium accumulation. Two contol dogs showed cadmium accumulation only in bone. 5. Significant differances in zinc, iron, and copper contents in tissue samples were observed between the control and experimental groups.

  • PDF

Effect of Distribution System Materials and Water Quality on Heterotrophic Plate Counts and Biofilm Proliferation

  • CHANG , YOUNG-CHEOL;JUNG, KWEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1114-1119
    • /
    • 2004
  • The biofilms on pipe walls in water distribution systems are of interest since they can lead to chlorine demand, coliform growth, pipe corrosion, and water taste and odor problems. As such, the study described in this paper is part of an AWWARF and Tampa Bay Water tailored collaboration project to determine the effect of blending different source waters on the water quality in various distribution systems. The project was based on 18 independent pilot distribution systems (PDS), each being fed by a different water blend (7 finished waters blended in different proportions). The source waters compared were groundwater, surface water, and brackish water, which were treated in a variety of pilot distribution systems, including reverse osmosis (RO) (desalination), both membrane and chemical softening, and ozonation-biological activated carbon (BAC), resulting in a total of 7 different finished waters. The observations from this study consistently demonstrated that unlined ductile iron was more heavily colonized by a biomass than galvanized steel, lined ductile iron, and PVC (in that order) and that the fixed biomass accumulation was more influenced by the nature of the supporting material than by the water quality (including the secondary residual levels). However, although the bulk liquid water cultivable bacterial counts (i.e. heterotrophic plate counts or HPCs) did not increase with a greater biofilm accumulation, the results also suggested that high HPCs corresponded to a low disinfectant residual more than a high biofilm inventory. Furthermore, temperature was found to affect the biofilms, plus the AOC was important when the residual was between 0.6 and 2.0 mg $Cl_2/l$. An additional aspect of the current study was that the potential of the exoproteolytic activity (PEPA) technique was used along with a traditional so-called destructive technique in which the biofilm was scrapped off the coupon surface, resuspended, and cultivated on an R2A agar. Both techniques indicated similar trends and relative comparisons among the PDSs, yet the culturable biofilm values for the traditional method were several orders of magnitude lower than the PEPA values.

Cadmium Tolerance in Alfalfa is Related to the Up-regulation of Iron and Sulfur Transporter Genes along with Phytochelatin Accumulation

  • Lee, Ki-Won;Lee, Sang-Hoon;Song, Yowook;Ji, Hee Jung;Choi, Bo Ram;Lim, Eun A;Rahman, Md Atikur
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.3
    • /
    • pp.190-195
    • /
    • 2020
  • Cadmium (Cd) toxicity is a serious limitation for agricultural production. In this study, we explored tolerance mechanism associated with Cd toxicity tolerance in alfalfa plants. We used three distinct alfalfa cultivars M. sativa cv. Vernal, M. sativa cv. Zhung Mu, and M. sativa cv. Xing Jiang Daye in this study. Cd showed declined chlorophyll score in Xing Jiang Daye compared with Zhung Mu and Vernal. No significant change observed among the cultivars for root and shoot length. Atomic absorption spectroscopy analysis demonstrated a significant accumulation of Cd, Fe, S and PC in distinct alfalfa cultivars. However, Zhung Mu and Xing Jiang Daye declined Cd accumulation in root, where Fe, S and PC incremented only in Zhung Mu. It suggests that excess Cd in Zhung Mu possibly inhibited in root by the increased accumulation of Fe, S and PC. This was further confirmed by the response of Fe (MsIRT1) and S transporters (MsSULTR1;2 and MsSULTR1;3), and MsPCS1 genes associated with Fe, S and PC availability and translocation in roots and shoots. It suggests that specially the transcript signal inducing the responses to adjust Cd especially in Zhung Mu. This finding provides the essential background for further molecular breeding program for forage crops.

Assessment of casting parts fatigue life for 3MW offshore wind turbine (3MW 해상풍력발전기 주물품의 내구수명 평가)

  • Roh, Gitae;Kang, Wonhyoung;Lee, Seongchan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.189.2-189.2
    • /
    • 2010
  • The purpose of this study is fatigue damage assessment for large sized casting parts (hub and mainframe) of the 3MW offshore wind turbine by computer simulation. Hub and mainframe durability assessment is necessary because wind turbine have to guarantee for 20 years. Fatigue life evaluation must be considered all of fatigue load conditions as the components are wind load transmission path. Palmgren-Miner linear damage accumulation hypothesis is applied for fatigue life estimation with stress-life approach. S-N curve for the spheroid graphite cast iron EN-GJS-400-18-LT is derived according to durability guidelines. Reduction factors were applied for survival probability, surface roughness, material quality and partial safety factor according to Germanischer Lloyd rules. To calculate fatigue damage, stress tensors, extracted from the unity load calculation from ANSYS is multiplied with time track of fatigue loads extracted from GH bladed. Damage accumulation is performed with all of fatigue load conditions at each finite element nodes. In this study maximum nodal damage value is under 1.0. casted parts are safe. This research was financially supported by the Ministry of Knowledge Economy(MKE), Korea Institute for Advancement of Technology(KIAT) and Honam Leading Industry Office through the Leading Industry Development for Economic Region.

  • PDF

Primary metabolic responses in the leaves and roots of bell pepper plants subjected to microelements-deficient conditions

  • Sung, Jwakyung;Lee, Yejin;Lee, Seulbi
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.179-189
    • /
    • 2021
  • Plants need essential mineral elements to favorably develop and to complete their life cycle. Despite the irreplaceable roles of microelements, they are often ignored due to the relative importance of macroelements with their influence on crop growth and development. We focused on the changes in primary metabolites in the leaves and roots of bell pepper plants under 6 microelements-deficient conditions: Copper (Cu), Zinc (Zn), Iron (Fe), Manganese (Mn), Boron (B) and Molybdenum (Mo). Bell pepper plants were grown in hydroponic containers, and individual elements were adjusted to 1/10-strength of Hoagland nutrient solution. A remarkable perturbation in the abundance of the primary metabolites was observed for the Fe and B and the Mn and B deficiencies in the leaves and roots, respectively. The metabolites with up-accumulation in the Fe-deficient leaves were glucose, fructose, xylose, glutamine, asparagine and serine. In contrast, the Mn deficiency also resulted in a higher accumulation of glucose, fructose, xylose, galactose, serine, glycine, β-alanine, alanine and valine in the roots. The B deficiency noticeably accumulated alanine, valine and phenylalanine in the roots while it showed a substantial decrease in glucose, fructose and xylose. These results show that the primary metabolism could be seriously disturbed due to a microelement deficiency, and the alteration may be either the specific or adaptive responses of bell pepper plants.

Studies on Inorganic Composition and Immunopotentiating Activity of Ganoderma lucidum in Korea (한국산(韓國産) 영지(靈芝)의 무기(無機) 성분(成分) 및 면역(免疫) 증강(增强) 작용(作用)에 관한 연구(硏究))

  • Shin, Hea-Won;Kim, Ha-Won;Choi, Eung-Chil;Toh, Sang-Hak;Kim, Byong-Kak
    • Korean Journal of Pharmacognosy
    • /
    • v.16 no.4
    • /
    • pp.181-190
    • /
    • 1985
  • To determine contents of inorganic elements of Ganoderma lucidum, the horn-shaped carpophores and the pileus of Ganoderma lucidum were incinerated and analyzed by inductively coupled plasma atomic emission spectrophotometry. The ash contents of the pileus and the horn-shaped carpophore were 1.48% and 1.40%, respectively. The pileus contained calcium, magnesium, sodium, manganese, iron, zinc and germanium in that order. The horn-shaped carpophore contained magnesium, calcium, zinc, manganese, iron, copper and germanium in that order. To examine the protein-bound polysaccharide from Ganoderma lucidum for immunopotentiating activity, its fruit bodies were extracted with hot water. Purification of the extract was carried out by acetone precipitation and dialysis. The fraction obtained during the purification procedure consisted of a polysaccharide moiety (51%) and a protein moiety (5%). When the compound was administered intraperitoneally to the mice at a dose of 50mg/kg, it enhanced the accumulation of the peritoneal exudate cells, macrophage and polymorphonuclear leucocytes, thereby indicating immunopotentiation.

  • PDF

Analysis of Heme Biosynthetic Pathways in a Recombinant Escherichia coli

  • Pranawidjaja, Stephanie;Choi, Su-In;Lay, Bibiana W.;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.880-886
    • /
    • 2015
  • Bacterial heme was produced from a genetic-engineered Escherichia coli via the porphyrin pathway and it was useful as an iron resource for animal feed. The amount of the E. coli-synthesized heme, however, was only few milligrams in a culture broth and it was not enough for industrial applications. To analyze heme biosynthetic pathways, an engineered E. coli artificially overexpressing ALA synthase (hemA from Rhodobacter sphaeroides) and pantothenate kinase (coaA gene from self geneome) was constructed as a bacterial heme-producing strain, and both the transcription levels of pathway genes and the intermediates concentrations were determined from batch and continuous cultures. Transcription levels of the pathway genes were not significantly changed among the tested conditions. Intracellular intermediate concentrations indicated that aminolevulinic acid (ALA) and coenzyme A (CoA) were enhanced by the hemA-coaA co-expression. Intracellular coproporphyrinogen I and protoporphyrin IX accumulation suggested that the bottleneck steps in the heme biosynthetic pathway could be the spontaneous conversion of HMB to coproporphyrinogen I and the limited conversion of protoporphyrin IX to heme, respectively. A strategy to increase the conversion of ALA to heme is discussed based on the results.