• 제목/요약/키워드: Iron accumulation

검색결과 103건 처리시간 0.035초

철분의 과잉섭취시 셀레늄 섭취수준이 철분과잉 축적에 대한 예방효과에 관한 연구 (Preventive Effect of Selenium Supplementation on Iron Accumulation of Rats Fed Diets Containing High Levels of iron)

  • 전예숙
    • Journal of Nutrition and Health
    • /
    • 제30권3호
    • /
    • pp.318-325
    • /
    • 1997
  • The purpose of this study was to investigate the effect of selenium supplementation of iron accumulation of rats fed diets containing high levels or iron. Sixty male Sprague-Dawley weaning rats were fed with diets containing various levels of iron(adequate : 35ppm, 2-fold : 70ppm, 4-fold : 140ppm) and selenium(adequat : 0.05ppm and high : 0.05ppm) for 12 weeks. Feed intakes of 2-fold and 4-fold iron groups were higher than that of adequate iron group. There was no difference body weight gain across iron and selenium containing diet groups. Hemoglobin level was increasd with iron increment and decreased with selenium supplementation. Iron contents in serum and tissues were increased as iron intake was increased. Liver iron content was decreased with selenium supplementation. Selenium content in liver was decreased with iron increment and increased with selenium supplementation. In the case of iron balance, iron excretion through urine and feces was significantly increased as iron intake was increased. However, apparent absorbability and retention rate of iron were not significantly affected by dietary iron or selenium.

  • PDF

신경계 질환에서 철 관련 자기공명영상 기법의 활용 (Application of Iron Related Magnetic Resonance Imaging in the Neurological Disorders)

  • 김태형;이재혁
    • Annals of Clinical Neurophysiology
    • /
    • 제16권1호
    • /
    • pp.1-7
    • /
    • 2014
  • Iron is an important element for brain oxygen transport, myelination, DNA synthesis and neurotransmission. However, excessive iron can generate reactive oxygen species and contribute neurotoxicity. Although brain iron deposition is the natural process with normal aging, excessive iron accumulation is also observed in various neurological disorders such as neurodegeneration with brain iron accumulation, Parkinson's disease, Alzheimer's disease, multiple sclerosis, Friedreich ataxia, and others. Magnetic resonance image (MRI) is a useful method for detecting iron deposits in the brain. It can be a powerful tool for diagnosis and monitoring, while furthering our understanding of the role of iron in the pathophysiology of a disease. In this review, we will introduce the mechanism of iron toxicity and the basics of several iron-related MRI techniques. Also, we will summarize the previous results concerning the clinical application of such MR imagings in various neurological disorders.

Neurodegeneration with Brain Iron Accumulation

  • Lee, Jae-Hyeok
    • Journal of Interdisciplinary Genomics
    • /
    • 제2권1호
    • /
    • pp.1-4
    • /
    • 2020
  • Recent advances in magnetic resonance imaging and identification of causative genes led to the recognition of a new group of disorders named neurodegeneration with brain iron accumulation (NBIA). NBIA is a group of inherited disorders characterized by abnormal iron deposition in the brain, usually in the basal ganglia. The disorder shares the clinical features of movement disorders and is accompanied by varying degrees of neuropsychiatric abnormalities. In this review, the causative genes, clinical presentations, neuroimaging features, and pathological findings are summarized.

초생추에서의 납의 독성과 철·구리·아연 및 단백질과의 상호작용 (Effects of Over-dosed Lead and its Interaction with Iron, Copper, Zinc or Protein Supplement in Chicks)

  • 박전홍;김춘수
    • 대한수의학회지
    • /
    • 제24권1호
    • /
    • pp.24-30
    • /
    • 1984
  • The protective effects of high levels of dietary iron, copper, zinc or protein on lead toxicity were studied In chicks. Growth retardation, reduction of feed intake, anemia and accumulation of lead in the bone and kidney were observed in chicks fed a diet containing 500mg lead as chloride per kg of feed for 42 days. Early changes due to ingested lead were inhibition of red blood cell ${\delta}$-aminolevulinic acid dehydrase at all doses and no effect of iron, copper, zinc or protein addition were observed. Tibia lead accumulation was reduced in chicks receiving additional dietary iron or zinc compared to the lead only group but increased in chicks given supplementary protein. Decreased body weight gain was overcome by supplementary zinc or protein in chicks fed lead but not by supplementary iron. Overall the results of this study show that lead poisoning can be partly reduced by providing supplementary iron, zinc or protein, but the interaction of these element remained to be elucidated.

  • PDF

Particulate matter induces ferroptosis by accumulating iron and dysregulating the antioxidant system

  • Minkyung Park;Young-Lai Cho;Yumin Choi;Jeong-Ki Min;Young-Jun Park;Sung-Jin Yoon;Dae-Soo Kim;Mi-Young Son;Su Wol Chung;Heedoo Lee;Seon-Jin Lee
    • BMB Reports
    • /
    • 제56권2호
    • /
    • pp.96-101
    • /
    • 2023
  • Particulate matter is an air pollutant composed of various components, and has adverse effects on the human body. Particulate matter is known to induce cell death by generating an imbalance in the antioxidant system; however, the underlying mechanism has not been elucidated. In the present study, we demonstrated the cytotoxic effects of the size and composition of particulate matter on small intestine cells. We found that particulate matter 2.5 (PM2.5) with extraction ion (EI) components (PM2.5 EI), is more cytotoxic than PM containing only polycyclic aromatic hydrocarbons (PAHs). Additionally, PM-induced cell death is characteristic of ferroptosis, and includes iron accumulation, lipid peroxidation, and reactive oxygen species (ROS) generation. Furthermore, ferroptosis inhibitor as liproxstatin-1 and iron-chelator as deferiprone attenuated cell mortality, lipid peroxidation, iron accumulation, and ROS production after PM2.5 EI treatment in human small intestinal cells. These results suggest that PM2.5 EI may increase ferroptotic-cell death by iron accumulation and ROS generation, and offer a potential therapeutic clue for inflammatory bowel diseases in human small intestinal cells.

Enhancement of Scenedesmus sp. LX1 Biomass Production and Lipid Accumulation Using Iron in Artificial Wastewater and Domestic Secondary Effluent

  • Zhao, Wen-Yu;Yu, Jun-Yi;Wu, Yin-Hu;Hong, Yu;Hu, Hong-Ying
    • 한국미생물·생명공학회지
    • /
    • 제42권2호
    • /
    • pp.131-138
    • /
    • 2014
  • While coupling wastewater treatment with microalgal bioenergy production is very promising, new approaches are needed to enhance microalgal growth and lipid accumulation in wastewater. Therefore, this study investigated the effect of iron on the growth, nutrient removal, and lipid accumulation of Scenedesmus sp. LX1 in both artificial wastewater and domestic secondary effluents. When increasing the iron concentration from 0 to 2 mg/l in the artificial wastewater, the biomass production of Scenedesmus sp. LX1 increased from 0.17 to 0.54 g/l; the nitrogen and phosphorus removal efficiency increased from 15.7% and 80.6% to 97.0% and 99.2%, respectively; and the lipid content was enhanced 84.2%. The relationship between the carrying capacity/maximal population growth rate of Scenedesmus sp. LX1 and the initial iron concentration were also in accordance with the Monod model. Furthermore, when increasing the iron concentration to 2 mg/l in four different domestic secondary effluent samples, the lipid content and lipid production of Scenedesmus sp. LX1 was improved by 17.4-33.7% and 21.5-41.8%, respectively.

답토양(沓土壤)의 형태적(形態的) 특징(特徵)에 따른 철(鐵) 및 망간의 이동집적(移動集積)에 관(關)한 연구(硏究) (Study on the Accumulation of Iron and Manganese in Relation to the Morphological Characteristics of Paddy Soils)

  • 신천수
    • Applied Biological Chemistry
    • /
    • 제18권3호
    • /
    • pp.123-144
    • /
    • 1975
  • 답토양(畓土壤)의 특징적(特徵的) 현상(現象)인 철(鐵) 및 망간의 이동집적(移動集積) 양상(樣相)을 그의 형태적(形態的) 특성(特性)과 관련(關聯)하여 추구(追求)하는 동시(同時), 철(鐵)의 집적증(集積層)을 정량적(定量)的)으로 판단(判斷)하는 방법(方法)을 모색(模索)하기 위(爲)하여 우리나라 답토양(畓土壤)의 표토중(表土中)에 함유(含有)하고 있는 활성철(活性鐵) 및 역환원성(易還元性) 망간 함량(含量)을 조사(調査)하였고 주요(主要) 답토양(畓土讓)의 형태(形態) 및 이화학적(理化學的) 특성(特性)과 층위별(層位別) 철(鐵) 및 망간의 관계(關係)를 검토(檢討)한 결과(結果)를 요약(要約)하면 다음과 같다. 1. 표토(表土)의 활성철(活性鐵) 및 역환원성(易還元性) 망간 함량(含量)은 토양(土壞) 배수(排水)가 불량(不良)할수록 많으며 동일배수조건(同一排求條件)에 있어서는 모래가 많을수록 적었다. 2. 표토(表土)의 활성철함량(活性鐵含量)은 배수조건(排水條件) 및 토성(土性)과는 관계(關係)없이 점토(粘土) 및 미사(微砂)의 총함량(總含豊)과 고도(高度)의 유의성(有意性) 있는 정(正)의 상관(相關)이 있었다. $$\hat{y}=0.3929+(0.0352{\times}clay%)+(0.0001023{\times}silt%)$$ 그러나 점토함량(粘土含量)과 역환원성(易還元性) 망간함량간(含量間)에는 상관(相關)이 없 었다. 3. 토양통별(土壤統別) 각(各) 층위(層位)의 활성철함량(活性鐵含量)(y)과 전철함량(全鐵含量)(x)간(間)에는 유의성(有意性) 있는 정(正)의 상관(相關)이 있어 다음과 같은 회귀식(回歸式)으로 표시(表示)할 수 있었다. $$y=0.361x-0.480(r=0.651^{**})$$ 그러나 역환원성(易還元性) 망간 함량(含量)은 전(全)망간 함량(含量)이 많아짐에 따라 증가(增加)하는 경향(傾向)은 있을 뿐 유의성(有意性)은 없었다. 4. 철(鐵) 및 망간의 집적(集積)은 어느 답토양(畓土壤)에서나 볼수 있으나 현저(顯著)한 집적(集穫)은 배수(排水)가 약간(若干) 양호(良好)한 식질(植質) 및 식양질토양(植壤質土壤)에 형성(形成)되며 배수(排水)가 불량(不良)한 답토양(畓土壤)에서는 토성(土性)에 관계(關係)없이 표토(表土)에 집적(集積)됨을 볼 수 있다. 5. 철(鐵)의 집적층판단(集積層判斷)은 단면관찰(斷面觀察) 또는 층위간(層位間) 활성철함량(活性鐵含量)만으로는 불충분(不充分)하며 전철(全鐵) 대(對) 활성철(活性鐵)의 비(比) 그리고 점토(粘土) 및 미사함량(微砂含量)으로 측정(推定)한 활성철함량(活性鐵含量)을 기초(基礎)로 하여야 하며 망간의 집적층(集積層)은 전(全)망간 및 역환원성(易還元性) 망간 함량(含量)과 그들의 비(比)로 추정(推定)하여야 할 것이다.

  • PDF

Iron Accumulation in Transgenic Red Pepper Plants Introduced Fp1 Gene Encoding the Iron Storage Protein

  • Kim, Young-Ho;Lee, Young-Ok;Nou, Ill-Sup;Shim, Ill-Yong;Toshiaki Kameya;Takashi Saito;Kang, Kwon-Kyoo
    • Plant Resources
    • /
    • 제1권1호
    • /
    • pp.6-12
    • /
    • 1998
  • The Fp1 gene, originally isolated from red pepper seedlings, encode the iron storage protein, and have a high homology with ferritin genes at DNA and amino acid level. In order to determine ferritin protein expression in vegetative tissue. Fp1 gene was constructed in plant expression vector(PIG12IHm) and introduced in red pepper(var. Bukang, Chungyang and Kalag-Kimjang 2) via Agrobacterium tumefaciensmediated transformation. After selection on MS media containing Kanamycin(Km), putatively selected transformants were confirmed by amplification of selectable marker gene(Fp1 and NPII) by polymerase chain reaction. Northern blot showed that transcripts of Fp1 gene were detected in mature leaves of the plants. In A6, A7 and A8 and A14 of transgenic plants, transcript of Fp1 gene was increased seven-fold to eight-fold than other transgenic plants. Also the proteins obtained from leaves of transgenic plants were immunologically detected by Western blot using rabbit anti-ferritin polyclonal antibody. The expression protein appeared as strong band of apparent mass of 23.5kDa. suggesting the iron accumulation in transgenic red pepper plants.

  • PDF

Isolation and Characterization of a Cdna ( Fp 1 ) Encoding the Iron Storage Protein in Red Pepper ( Capsicum annuum L. )

  • Kim, Ho-Young;Lee, Young-Ok;Noh, Ill-Sup;Kang, Hee-Wan;Kameya, Toshiaki;Saito, Takashi;Kang, Kwon-Kyoo
    • Plant Resources
    • /
    • 제1권1호
    • /
    • pp.13-21
    • /
    • 1998
  • A cDNA Fragment encoding iron storage protrin generated by polymerase chain reaction(PCR) using highly conserved regions of ferritin related genes were used to sereen a red pepper cDNA library. cDNA clone was designated as Fp1. Fp1 clone contatines a 5' nontranslated region of 51dp containing stop conds. Down stream from 5' UTP. an open reading frame of 750bp was observed. followed by a 3' UTR of 272bp. The deduces amino acid sequence of red pepper protein(Fp1) showed 84%, 48% and 36% identity with soybean(SolC). human(HuL H) and horse spleen(HoS-L) ferritin mRNA accumulation in response to iron. Ferritin mRNA accumulation was transient and particularly abundant in leaves. reaching a maxmum at 12h. The level of ferritin mRNA in roots was affected to a lesser extent than in leaves.

  • PDF

Gene Expression and Iron Accumulation in Progeny of Transformants Introduced Fp1 Gene Encoding the Iron Storage Protein in Red Pepper (Capsicum annuum L.)

  • Kang, Kwon-Kyoo;Kim, Young-Ho
    • Plant Resources
    • /
    • 제4권1호
    • /
    • pp.26-30
    • /
    • 2001
  • To improve the iron content of red pepper, we have transferred the entire coding sequence of the ferritin gene(Fpl) into Capsicum annuum (L. cv. Chungyang and Bukang) by Agrobacterium mediated transformation. Transformants were found to contain the Fp1 gene at up to three loci, increased distinct iron content changes. In transgenic plants, iron content was as much as 7-fold to 8-folds greater than that of their untransformed counterparts. Furthermore, the Rl progenies from transformant(A7, A8) co-segregated into a 15:1 ratio for both Kanamycin resistance and genotype of high iron.

  • PDF